用配方法解一元二次方程x2+4x﹣1=0,此方程可变形为( )
A. (x+2)2=5 B. (x﹣2)2= 5
C. (x+2)2=1 D. (x﹣2)2=1
下列事件中必然发生的事件是( )
A. 一个图形平移后所得的图形与原来的图形不全等
B. 不等式的两边同时乘以一个数,结果仍是不等式
C. 200件产品中有5件次品,从中任意抽取6件,至少有一件是正品
D. 随意翻到一本书的某页,这页的页码一定是偶数
方程x2=4x的根是( )
A. x=4 B. x=0 C. x1=0,x2=4 D. x1=0,x2=﹣4
已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:______.
如图,在平面直角坐标系中A点的坐标为(8,m),AB⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.
(1)求反比例函数解析式;
(2)求四边形OCDB的面积.