满分5 > 初中数学试题 >

如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°...

如图,正方形ABCD的边长为4,点EF分别在边ABAD上,且∠ECF45°,CF的延长线交BA的延长线于点GCE的延长线交DA的延长线于点H,连接ACEFGH

(1)填空:∠AHC     ACG(填“>”或“<”或“=”)

(2)线段ACAGAH什么关系?请说明理由;

(3)AEm

AGH的面积S有变化吗?如果变化.请求出Sm的函数关系式;如果不变化,请求出定值.

请直接写出使△CGH是等腰三角形的m值.

 

(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为或2或8﹣4.. 【解析】 (1)证明∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,即可推出∠AHC=∠ACG; (2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题; (3)①△AGH的面积不变.理由三角形的面积公式计算即可; ②分三种情形分别求解即可解决问题. (1)∵四边形ABCD是正方形, ∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°, ∴AC=, ∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°, ∴∠AHC=∠ACG. 故答案为=. (2)结论:AC2=AG•AH. 理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°, ∴△AHC∽△ACG, ∴, ∴AC2=AG•AH. (3)①△AGH的面积不变. 理由:∵S△AGH=•AH•AG=AC2=×(4)2=16. ∴△AGH的面积为16. ②如图1中,当GC=GH时,易证△AHG≌△BGC, 可得AG=BC=4,AH=BG=8, ∵BC∥AH, ∴, ∴AE=AB=. 如图2中,当CH=HG时, 易证AH=BC=4, ∵BC∥AH, ∴=1, ∴AE=BE=2. 如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5. 在BC上取一点M,使得BM=BE, ∴∠BME=∠BEM=45°, ∵∠BME=∠MCE+∠MEC, ∴∠MCE=∠MEC=22.5°, ∴CM=EM,设BM=BE=m,则CM=EMm, ∴m+m=4, ∴m=4(﹣1), ∴AE=4﹣4(﹣1)=8﹣4, 综上所述,满足条件的m的值为或2或8﹣4.
复制答案
考点分析:
相关试题推荐

为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母ABC表示这三个材料),将ABC分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.

1)小礼诵读《论语》的概率是     ;(直接写出答案)

2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.

 

查看答案

如图,BC是⊙O的直径,AB是⊙O的弦,半径OFACAB于点E

1)求证:

2)若AB6EF3.求半径OB的长.

 

查看答案

解方程:x2+2x30(公式法)

 

查看答案

如图,抛物线yax21a0)与直线ykx+3交于MN两点,在y轴负半轴上存在一定点P,使得不论k取何值,直线PMPN总是关于y轴对称,则点P的坐标是_____

 

查看答案

如图,AB为⊙O的直径,且AB4,点C在半圆上,OCAB,垂足为点OP为半圆上任意一点,过P点作PEOC于点E,设OPE的内心为M,连接OMPM.当点P在半圆上从点B运动到点A时,内心M所经过的路径长为_____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.