满分5 > 初中数学试题 >

如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C=...

如图,AB是⊙O的直径,BC交⊙O于点DE的中点,AEBC交于点F,∠C2EAB

1)求证:AC是⊙O的切线;

2)已知CD4CA6

①求CB的长;

②求DF的长.

 

(1)证明见解析;(2) ①BC=9;②DF=2. 【解析】 (1) 连结AD, 根据圆周角定理,由E是BD的中点得到∠EAB=∠EAD, 由于∠ACB=2∠EAB, 则∠ACB=∠DAB, 再利用圆周角定理得到∠ADB=, 则∠DAC+∠ACB=90, 所以∠DAC+∠DAB=, 于是根据切线的判定定理得到AC是OO的切线; (2)①在Rt△ABC中, 根据cosC===,AC=6可得AC=6; ②作FH⊥AB于H, 由BD=BC-CD=5, ∠EAB=∠EAD, FD⊥AD,FH⊥AB, 推出FD=FH, 设FB=x, 则DF=FH=5-x, 根据cos∠BFH=cos∠C==,构建方程即可解决问题. (1)连结AD,如图, ∵E是的中点, ∴==, ∴∠EAB=∠EAD, ∵∠ACB=2∠EAB, ∴∠ACB=∠DAB, ∵AB是⊙O的直径, ∴∠ADB=90°, ∴∠DAC+∠ACB=90°, ∴∠DAC+∠DAB=90°,即∠BAC=90°, ∴AC⊥AB, ∴AC是⊙O的切线; (2)①在Rt△ACB中, ∵cosC===,AC=6, ∴BC=9. ②作FH⊥AB于H, ∵BD=BC﹣CD=5,∠EAB=∠EAD,FD⊥AD,FH⊥AB, ∴FD=FH,设FB=x,则DF=FH=5﹣x, ∵FH∥AC, ∴∠HFB=∠C, 在Rt△BFH中, ∵cos∠BFH=cos∠C==, ∴=, 解得x=3,即BF的长为3, ∴DF=2
复制答案
考点分析:
相关试题推荐

如图,正方形ABCD的边长为4,点EF分别在边ABAD上,且∠ECF45°,CF的延长线交BA的延长线于点GCE的延长线交DA的延长线于点H,连接ACEFGH

(1)填空:∠AHC     ACG(填“>”或“<”或“=”)

(2)线段ACAGAH什么关系?请说明理由;

(3)AEm

AGH的面积S有变化吗?如果变化.请求出Sm的函数关系式;如果不变化,请求出定值.

请直接写出使△CGH是等腰三角形的m值.

 

查看答案

为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母ABC表示这三个材料),将ABC分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.

1)小礼诵读《论语》的概率是     ;(直接写出答案)

2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.

 

查看答案

如图,BC是⊙O的直径,AB是⊙O的弦,半径OFACAB于点E

1)求证:

2)若AB6EF3.求半径OB的长.

 

查看答案

解方程:x2+2x30(公式法)

 

查看答案

如图,抛物线yax21a0)与直线ykx+3交于MN两点,在y轴负半轴上存在一定点P,使得不论k取何值,直线PMPN总是关于y轴对称,则点P的坐标是_____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.