满分5 > 初中数学试题 >

某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息: ①该产品90天...

某公司生产的某种产品每件成本为40经市场调查整理出如下信息

该产品90天售量(n)与时间(x)满足一次函数关系部分数据如下表

时间(第x天)

1

2

3

10

日销售量(n件)

198

196

194

?

 

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

时间(第x天)

1≤x50

50≤x≤90

销售价格(元/件)

x+60

100

 

(1)求出第10天日销售量

(2)设销售该产品每天利润为y请写出y关于x的函数表达式并求出在90天内该产品的销售利润最大?最大利润是多少?(提示每天销售利润=日销售量×每件销售价格每件成本)

(3)在该产品销售的过程中共有多少天销售利润不低于5400请直接写出结果.

 

(1)180件;(2)第40天,利润最大7200元;(3)46天 【解析】试题(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可; (2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论; (3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元. 试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得: , 解得: , 所以n关于x的一次函数表达式为n=-2x+200; 当x=10时,n=-2×10+200=180. (2)设销售该产品每天利润为y元,y关于x的函数表达式为: 当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200, ∵-2<0,∴当x=40时,y有最大值,最大值是7200; 当50≤x≤90时,y=-120x+12000, ∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000; 综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元; (3)在该产品销售的过程中,共有46天销售利润不低于5400元.  
复制答案
考点分析:
相关试题推荐

如图,某天然气公司的主输气管道从A市的北偏东60°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市的北偏东30°方向,测绘员沿主输气管道步行1000米到达C处,测得小区M位于点C的北偏西75°方向,试在主输气管道AC上寻找支管道连接点N,使其到该小区铺设的管道最短,并求AN的长.(精确到1米,≈1.414,≈1.732)

 

查看答案

已知:过外一点C直径AF,垂足为E,交弦ABD,若,则

判断直线BC的位置关系,并证明;

OA中点,,请直接写出图中阴影部分的面积.

 

查看答案

“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

 

 

请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将两幅不完整的图补充完整;

(3)若居民区有8000人,请估计爱吃D粽的人数;

(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.

 

查看答案

如图,在RtABC中,∠ACB90°,CDAB边上的中线,ECD的中点,过点CAB的平行线交AE的延长线于点F,连接BF

1)求证:四边形BDCF是菱形;

2)当RtABC中的边或角满足什么条件时?四边形BDCF是正方形,请说明理由.

 

查看答案

先化简,再求值(1,其中x4

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.