满分5 > 初中数学试题 >

如图1,平面直角坐标系xOy中,已知抛物线y=ax2+4x与x轴交于O、A两点....

如图1,平面直角坐标系xOy中,已知抛物线yax2+4xx轴交于OA两点.直线ykx+m经过抛物线的顶点B及另一点DDA不重合),交y轴于点C

1)当OA4OC3时.

分别求该抛物线与直线BC相应的函数表达式;

连结AC,分别求出tanCAOtanBAC的值,并说明∠CAO与∠BAC的大小关系;

2)如图2,过点DDEx轴于点E,连接CE.当a为任意负数时,试探究ABCE的位置关系?

 

(1)①y=﹣x2+4x,y=x+3;②∠CAO>∠BAC;(2)AB∥CE,理由见解析. 【解析】 (1)①根据题意得出A、C的坐标,由A的坐标可求出抛物线解析式及其顶点B坐标,根据B、C坐标可得直线解析式; ②tan∠CAO=,先根据勾股定理逆定理判定△ABC是直角三角形,再根据tan∠BAC=可得答案; (2)根据y=ax2+4x求得A(-,0)、B(-,-),先求得tan∠BAO=2,再将B(-,-)代入y=kx+m得m=,据此知点C(0,),由可求得E(,0),根据tan∠CEO==2知∠BAO=∠CEO,从而得出答案. (1)①∵OA=4,OC=3, ∴A(4,0),C(0,3), 将A(4,0)代入y=ax2+4x,得:16a+16=0, 解得a=﹣1, 则y=﹣x2+4x=﹣(x﹣2)2+4, ∴B(2,4), 将B(2,4),C(0,3)代入y=kx+m,得:, 解得, ∴y=x+3; ②tan∠CAO=, ∵AC2=(0﹣4)2+(3﹣0)2=25,BC2=(2﹣0)2+(4﹣3)2=5,AB2=(2﹣4)2+(4﹣0)2=20, ∴AC2=BC2+AB2,且BC=,AB=2, ∴△ABC是直角三角形,其中∠ABC=90°, 则tan∠BAC=, ∵tan∠CAO>tan∠BAC, ∴∠CAO>∠BAC. (2)AB∥CE,理由如下: 由y=ax2+4x=0得x1=0,x2=﹣,则A(﹣,0), 又y=ax2+4x=a(x+)2﹣, ∴顶点B的坐标为(﹣,﹣), 则tan∠BAO=, 将B(﹣,﹣)代入y=kx+m,得:﹣+m=﹣, 解得m=, ∴点C(0,),即OC=, 由得x=﹣或x=, ∴E(,0), ∴OE=, ∴tan∠CEO=, ∴tan∠BAO=tan∠CEO, ∴∠BAO=∠CEO, ∴AB∥CE.
复制答案
考点分析:
相关试题推荐

如图,在RtABO中,∠BAO90°AOABBO8,点A的坐标(﹣80),点C在线段AO上以每秒2个单位长度的速度由AO运动,运动时间为t秒,连接BC,过点AADBC,垂足为点E,分别交BO于点F,交y轴于点 D

1)用t表示点D的坐标     

2)如图1,连接CF,当t2时,求证:∠FCO=∠BCA

3)如图2,当BC平分∠ABO时,求t的值.

 

查看答案

某公司生产的某种产品每件成本为40经市场调查整理出如下信息

该产品90天售量(n)与时间(x)满足一次函数关系部分数据如下表

时间(第x天)

1

2

3

10

日销售量(n件)

198

196

194

?

 

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

时间(第x天)

1≤x50

50≤x≤90

销售价格(元/件)

x+60

100

 

(1)求出第10天日销售量

(2)设销售该产品每天利润为y请写出y关于x的函数表达式并求出在90天内该产品的销售利润最大?最大利润是多少?(提示每天销售利润=日销售量×每件销售价格每件成本)

(3)在该产品销售的过程中共有多少天销售利润不低于5400请直接写出结果.

 

查看答案

如图,某天然气公司的主输气管道从A市的北偏东60°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市的北偏东30°方向,测绘员沿主输气管道步行1000米到达C处,测得小区M位于点C的北偏西75°方向,试在主输气管道AC上寻找支管道连接点N,使其到该小区铺设的管道最短,并求AN的长.(精确到1米,≈1.414,≈1.732)

 

查看答案

已知:过外一点C直径AF,垂足为E,交弦ABD,若,则

判断直线BC的位置关系,并证明;

OA中点,,请直接写出图中阴影部分的面积.

 

查看答案

“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

 

 

请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将两幅不完整的图补充完整;

(3)若居民区有8000人,请估计爱吃D粽的人数;

(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.