满分5 > 初中数学试题 >

如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x...

如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过AABx轴,截取AB=OA(BA右侧),连接OB,交反比例函数y=的图象于点P.

(1)求反比例函数y=的表达式;

(2)求点B的坐标;

(3)求OAP的面积.

 

(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)△OAP的面积=5. 【解析】(1)将点A的坐标代入解析式求解可得; (2)利用勾股定理求得AB=OA=5,由AB∥x轴即可得点B的坐标; (3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得. (1)将点A(4,3)代入y=,得:k=12, 则反比例函数解析式为y=; (2)如图,过点A作AC⊥x轴于点C, 则OC=4、AC=3, ∴OA==5, ∵AB∥x轴,且AB=OA=5, ∴点B的坐标为(9,3); (3)∵点B坐标为(9,3), ∴OB所在直线解析式为y=x, 由可得点P坐标为(6,2),(负值舍去), 过点P作PD⊥x轴,延长DP交AB于点E, 则点E坐标为(6,3), ∴AE=2、PE=1、PD=2, 则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.
复制答案
考点分析:
相关试题推荐

如图,点O是ABC的边AB上一点,O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.

(1)求证:∠C=90°;

(2)当BC=3,sinA=时,求AF的长.

 

查看答案

一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;

(1)搅匀后,从中任意取一个球,标号为正数的概率是         

(2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.

 

查看答案

某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:

 

频数

频率

体育

40

0.4

科技

25

a

艺术

b

0.15

其它

20

0.2

 

请根据上图完成下面题目:

(1)总人数为     人,a=     ,b=     

(2)请你补全条形统计图.

(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?

 

查看答案

如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:结果精确到0.1小时)

 

查看答案

已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AEBF.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.