满分5 > 初中数学试题 >

如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,...

如图,抛物线yx2+bx+cx轴交于点AB30),与y轴交于点C03).

1)求抛物线的解析式;

2)若点M是抛物线上在x轴下方的动点,过MMNy轴交直线BC于点N,求线段MN的最大值;

3E是抛物线对称轴上一点,F是抛物线上一点,是否存在以ABEF为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.

 

(1) y=x2﹣4x+3;(2);(3)见解析. 【解析】 (1)利用待定系数法进行求解即可; (2)设点M的坐标为(m,m2﹣4m+3),求出直线BC的解析,根据MN∥y轴,得到点N的坐标为(m,﹣m+3),由抛物线的解析式求出对称轴,继而确定出1<m<3,用含m的式子表示出MN,继而利用二次函数的性质进行求解即可; (3)分AB为边或为对角线进行讨论即可求得. (1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中, 得:, 解得:, 故抛物线的解析式为y=x2﹣4x+3; (2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3, 把点B(3,0)代入y=kx+3中, 得:0=3k+3,解得:k=﹣1, ∴直线BC的解析式为y=﹣x+3, ∵MN∥y轴, ∴点N的坐标为(m,﹣m+3), ∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1, ∴抛物线的对称轴为x=2, ∴点(1,0)在抛物线的图象上, ∴1<m<3. ∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣)2+, ∴当m=时,线段MN取最大值,最大值为; (3)存在.点F的坐标为(2,﹣1)或(0,3)或(4,3). 当以AB为对角线,如图1, ∵四边形AFBE为平行四边形,EA=EB, ∴四边形AFBE为菱形, ∴点F也在对称轴上,即F点为抛物线的顶点, ∴F点坐标为(2,﹣1); 当以AB为边时,如图2, ∵四边形AFBE为平行四边形, ∴EF=AB=2,即F2E=2,F1E=2, ∴F1的横坐标为0,F2的横坐标为4, 对于y=x2﹣4x+3, 当x=0时,y=3; 当x=4时,y=16﹣16+3=3, ∴F点坐标为(0,3)或(4,3), 综上所述,F点坐标为(2,﹣1)或(0,3)或(4,3).
复制答案
考点分析:
相关试题推荐

如图,正方形ABCD的边长为4,点EF分别在边ABAD上,且∠ECF45°,CF的延长线交BA的延长线于点GCE的延长线交DA的延长线于点H,连接ACEFGH

(1)填空:∠AHC     ACG(填“>”或“<”或“=”)

(2)线段ACAGAH什么关系?请说明理由;

(3)AEm

AGH的面积S有变化吗?如果变化.请求出Sm的函数关系式;如果不变化,请求出定值.

请直接写出使△CGH是等腰三角形的m值.

 

查看答案

某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y()与销售时间x()之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.

(1)24天的日销售量是____件,日销售利润是______元.

(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)

(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?

 

查看答案

在一次军事演习中,红方侦查员发现蓝方的指挥部P设在S区.到公路a与公路b的距离相等,并且到水井M与小树N的距离也相等,请你帮助侦查员在图上标出蓝方指挥部P的位置.(不写作法,保留作图痕迹)

 

查看答案

知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)

 

查看答案

如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连结AC,将△ACE沿AC翻转得到△ACF,直线FC与直线AB相交于点G

1)求证:FG⊙O的切线;

2)若BOG的中点,CE,求⊙O的半径长;

3求证:∠CAG=∠BCG

⊙O的面积为GC2,求GB的长.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.