如图1,抛物线y=﹣x2+bx+c经过点A(﹣2,0),B(﹣8,0),C(﹣4,4).
(1)求这个抛物线的表达式;
(2)如图2,一把宽为2的直尺的右边缘靠在直线x=﹣4上,当直尺向左平移过程中刻度线0始终在x轴上,直尺的右边边缘与抛物线和直线BC分别交于G、D点,直尺的左边边缘与抛物线和直线BC分别交于F、E点,当图中四边形DEFG是平行四边形时,此时直尺左边边缘与直线BC的交点E的刻度是多少?
(3)如图3,在直线x=﹣4上找一点K,使得∠ACP+∠AKC=∠ABC(直线x=﹣4与x轴交于P点),请直接写出K点的坐标.
△ABC和△ADE是有公共顶点的三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.
(1) ①如图1,∠ADE=∠ABC=45°,求证:∠ABD=∠ACE.
②如图2,∠ADE=∠ABC=30°,①中的结论是否成立?请说明理由.
(2)在(1) ①的条件下,AB=6,AD=4,若把△ADE绕点A旋转,当∠EAC=90°时,画图并求PB的长度.
某文具店经销甲、乙两种不同的笔记本.已知:两种笔记本的进价之和为10元,甲种笔记本每本获利2元,乙种笔记本每本获利1元,马阳光同学买4本甲种笔记本和3本乙种笔记本共用了47元.
(1)甲、乙两种笔记本的进价分别是多少元?
(2)该文具店购入这两种笔记本共60本,花费不超过296元,则购买甲种笔记本多少本时该文具店获利最大?
(3)店主经统计发现平均每天可售出甲种笔记本350本和乙种笔记本150本.如果甲种笔记本的售价每提高1元,则每天将少售出50本甲种笔记本;如果乙种笔记本的售价每提高1元,则每天少售出40本乙种笔记本,为使每天获取的利润更多,店主决定把两种笔记本的价格都提高元,在不考虑其他因素的条件下,当定为多少元时,才能使该文具店每天销售甲、乙两种笔记本获取的利润最大?
如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C坐标为(﹣1,0),点A的坐标为(0,2).一次函数y=kx+b的图象经过点B,C,反比例函数y=的图象也经过点B.
(1)求反比例函数的关系式;
(2)直接写出当x<0时,kx+b﹣<0的解集.
被誉为“中原第一高楼”的郑州会展宾馆(俗称“大玉米”)坐落在风景如画的如意湖,是来郑州观光的游客留影的最佳景点.学完了三角函数知识后,刘明和王华同学决定用自己学到的知识测量“大王米”的高度,他们制订了测量方案,并利用课余时间完成了实地测量.测量项目及结果如下表:
项目 | 内容 | |||
课题 | 测量郑州会展宾馆的高度 | |||
测量示意图 | 如图,在E点用测倾器DE测得楼顶B 的仰角是α,前进一段距离到达C点用测倾器CF测得楼顶B的仰角是β,且点A、B、C、D、E、F均在同一竖直平面内 | |||
测量数据 | ∠α的度数 | ∠β的度数 | EC的长度 | 测倾器DE ,CF的高度 |
40° | 45° | 53米 | 1.5米 | |
… | … |
请你帮助该小组根据上表中的测量数据,求出郑州会展宾馆的高度(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)
如图所示,在等边三角形ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).
(1)连接EF,当EF经过AC边的中点D时,求证:四边形AFCE是平行四边形;
(2)填空:①当t为 s时,四边形ACFE是菱形;②当t为 s时,△ACE的面积是△ACF的面积的2倍.