满分5 > 初中数学试题 >

如图,四边形ABCD为矩形,AC为对角线,AB=6,BC=8,点M是AD的中点,...

如图,四边形ABCD为矩形,AC为对角线,AB6BC8,点MAD的中点,PQ两点同时从点M出发,点P沿射线MA向右运动;点Q沿线段MD先向左运动至点D后,再向右运动到点M停止,点P随之停止运动.PQ两点运动的速度均为每秒1个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQABC重叠部分的面积为S

1)当点R在线段AC上时,求出t的值.

2)求出St之间的函数关系式,并直接写出取值范围.(求函数关系式时,只须写出重叠部分为三角形时的详细过程,其余情况直接写出函数关系式.)

3)在点P、点Q运动的同时,有一点E以每秒1个单位的速度从CB运动,当t为何值时,LRE是等腰三角形.请直接写出t的值或取值范围.

 

(1)t=; (2)S与t之间的函数关系式为:. (3)t的取值范围是4≤t≤8时,△LRE是等腰三角形;当t=4s,或t=8s或s或s时,△LRE是等腰三角形. 【解析】 试题(1)根据三角形相似可得,即,解答即可; (2)根据点P和点Q的运动情况分情况讨论解答即可; (3)根据△LRE是等腰三角形满足的条件. 试题解析:(1)当点R在线段AC上时,应该满足:, 设MP为t,则PR=2t,AP=4﹣t, ∴可得:,即, 解得:t=; (2)当时,正方形PRLQ与△ABC没有重叠部分,所以重叠部分的面积为0; 当时,正方形PRLQ与△ABC重叠部分的面积为直角三角形KRW的面积=, ; 当时,正方形PRLQ与△ABC重叠部分的面积=×(2t﹣3)2t=2t2﹣3t. 当3<t≤4时,正方形PRLQ与△ABC重叠部分的面积=×(12﹣2t)×2t=﹣2t2+12t. 当4<t≤8时,正方形PRLQ与△ABC重叠部分的面积为S=; 综上所述S与t之间的函数关系式为:. (3)在点P、点Q运动的同时,有一点E以每秒1个单位的速度从C向B运动, ①当点E是BC的中点时,点E在LR的中垂线线上时,EL=ER.此时t=4s,△LRE是等腰三角形; 当点E与点B重合时,点E在LR的中垂线线上时,EL=ER.此时t=8s,△LRE是等腰三角形; 综上所述,t的取值范围是4≤t≤8; ②当EL=LR时,如图所示: LR=2t,CF=NL=4﹣t,则EF=2t﹣4.FL=CN=6﹣2t, 则在直角△EFL中,由勾股定理得到:EL2=EF2+FL2=(2t﹣4)2+(6﹣2t)2. 故由EL=LR得到:EL2=LR2,即4t2=10t2﹣40t+52, 整理,得 t2﹣10t+13=0, 解得 t1=5+2(舍去),t2=5﹣2. 所以当t=5﹣2(s)时,△LRE是等腰三角形; 同理,当ER=LR时,. 综上所述,t的取值范围是4≤t≤8时,△LRE是等腰三角形;当t=4s,或t=8s或s或s时,△LRE是等腰三角形. 考点;四边形综合题.  
复制答案
考点分析:
相关试题推荐

近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:

每千克销售(元)

40

39

38

37

30

每天销量(千克)

60

65

70

75

110

 

设当单价从40/千克下调了x元时,销售量为y千克;

1)写出yx间的函数关系式;

2)如果凤梨的进价是20/千克,若不考虑其他情况,那么单价从40/千克下调多少元时,当天的销售利润W最大?利润最大是多少?

3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于32/千克,问一次进货最多只能是多少千克?

4)若你是该销售部负责人,那么你该怎样进货、销售,才能使销售部利润最大?

 

查看答案

如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C

1)求证:BC是⊙O的切线;

2)若⊙O的半径为6BC8,求弦BD的长.

 

查看答案

如图,点A的坐标为(30),点C的坐标为(04),OABC为矩形,反比例函数 的图象过AB的中点D,且和BC相交于点EF为第一象限的点,AF12CF13

1)求反比例函数和直线OE的函数解析式;

2)求四边形OAFC的面积?

 

查看答案

随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在2040万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:

1)调查样本人数为     ,样本中B类人数百分比是     ,其所在扇形统计图中的圆心角度数是     

2)把条形统计图补充完整;

3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从这5个人中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.

 

查看答案

如图,线段ACBDO,点EF在线段AC上,△DFO≌△BEO,且AFCE,连接ABCD,求证:ABCD

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.