下列给出的四组数中,是勾股数的一组是()
A. 1,2,3 B. 1,2, C. 5,12,13 D. 6,8,9
下列各式中计算正确的是()
A. B. C. D.
下列式子一定是二次根式的是()
A. B. C. x D.
已知如图1,抛物线y=﹣x2﹣x+3与x轴交于A和B两点(点A在点B的左侧),与y轴相交于点C,点D的坐标是(0,﹣1),连接BC、AC
(1)如图2,若在直线AC上方的抛物线上有一点F,当△ADF的面积最大时,有一线段MN= (点M在点N的左侧)在直线BD上移动,首尾顺次连接点A、M、N、F构成四边形AMNF,请求出四边形AMNF的周长最小时点N的横坐标;
(2)如图3,将△DBC绕点D逆时针旋转α°(0<α°<180°),记旋转中的△DBC为△DB′C′,若直线B′C′与直线AC交于点P,直线B′C′与直线DC交于点Q,当△CPQ是等腰三角形时,直接写出CP的值.
在一元二次方程中,有著名的韦达定理:对于一元二次方程,如果方程有两个实数根,那么(说明:定理成立的条件)。比如方程中,,所以该方程有两个不等的实数根,记方程的两根为,,那么+=, =,请根据阅读材料解答下列各题:
(1)已知方程的两根为、,且 >,求下列各式的值:
① ②
(2)已知是一元二次方程的两个实数根.
①是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由.
②求使的值为整数的实数的整数值.
在菱形ABCD中,BD=BC,
(1)如图,若菱形ABCD的面积为6.求点B到DC的最短距离.
(2)如图2,点F在BC边上,且DE=CF,连接DF交BE于点M,连接EB并延长至点N,使得BN=DM,求证:AN=DM+BM.