如图,矩形ABCD中,AB=3,BC=4,线段EF在对角线AC上(E不与A重合,F不与C重合),EG⊥AD,FH⊥BC,垂足分别是G、H,且EG+FH=EF.
(1)写出图中与△AEG相似的三角形;
(2)求线段EF的长;
(3)设EG=x,△AEG与△CFH的面积和为S,写出S关于x的函数关系式及自变量x的取值范围,并求出S的最小值
设C为线段AB的中点,四边形BCDE是以BC为一边的正方形,以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.
求证:(1)AD是⊙B的切线;
(2)AD=AQ;
(3)BC2=CF×EG。
在某校举办的足球比赛中,规定:胜一场得3分,平一场得1分,负一场得0分.某班足球队参加了12场比赛,共得22分,已知这个球队只输了2场,那么此队胜几场,平几场?
图形的操作过程(本题中四个矩形的水平方向的边长均为a,竖直方向的边长均b):
●在图1中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分);
●在图2中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).
(1)在图3中,请你类似地画一条有两个折点的线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;
(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:
S1=__________,S2=__________,S3=__________.
(3)联想与探索
如上图,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草场地面积是多少?并说明你的猜想是正确的.
如图,这是某班数学科代表根据他们班上学期的数学成绩画出的频数分布直方图,从这个图中,请你回答下列问题:
(1)你认为他们班共有学生多少名?
(2)全班数学成绩及格率(60分及以上为及格)为多少?
(3)在哪个分数段的学生最多?
设一个三角形的三边长分别为3,1-2m,8,求m的取值范围.