已知,那么下列比例式中正确的是
A. B. C. D.
已知抛物线与x轴交于A、B两点点A在点B的左侧.
当时,抛物线与y轴交于点C.
直接写出点A、B、C的坐标;
如图1,连接AC,在x轴上方的抛物线上有一点D,若,求点D的坐标;
如图2,点P为抛物线位于第一象限图象上一动点,过P作,求PQ的最大值;
如图3,若点M为抛物线位于x轴上方图象上一动点,过点M作轴,垂足为N,直线MN上有一点H,满足与互余,试判断HN的长是否变化,若变化,请说明理由,若不变,请求出HN长.
定义:对角互补且有一组邻边相等的四边形称为奇异四边形.
(1)概念理【解析】
在平行四边形、菱形、矩形、正方形中,你认为属于奇异四边形的有__________ ;
(2)性质探究:
①如图1,四边形ABCD是奇异四边形,AB=AD,求证:CA平分∠BCD;
②如图2,四边形ABCD是奇异四边形,AB=AD,∠BCD=2α,试说明:cosα=;
(3)性质应用:
如图3,四边形ABCD是奇异四边形,四条边中仅有BC=CD,且四边形ABCD的周长为6+2,∠BAC=45°,AC=3,求奇异四边形ABCD的面积.
如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线.
(2)若BC=2,sin∠BCP=,求点B到AC的距离.
(3)在第(2)的条件下,求△ACP的周长.
在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:
(1)请写出甲的骑行速度为 米/分,点M的坐标为 ;
(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);
(3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.
某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少?