满分5 > 初中数学试题 >

如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于...

如图,A,B,C三点在⊙O,直径BD平分∠ABC,过点DDE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF=DE.

(1)求证:DF是⊙O的切线;

(2)连接AF交DE于 M,若AD=4,DE=5,求 EM 的长.

 

(1)证明见解析;(2)1 【解析】 试题 (1)由BD平分∠ABC,AB∥DE可证得∠DBE=∠BDE,由DE=EF,可得∠EDF=∠EFD,由此可得∠BDE+∠EDF=90°,即可得到BD⊥DF,从而可得DF是⊙O的切线; (2)如图,连接DC,由已知易证△ABD≌△CBD,从而可得 CD=AD=4,AB=BC;在Rt△DCE中由勾股定理可求得EC=3;由(1)可得BE=DE=EF=5,从而可得BC=AB=8;由AB∥DE可得△ABF∽△MEF,由此即可求得ME的长,最后由MD=DE-ME即可求得所求答案. 试题解析: (1)∵ BD平分∠ABC, ∴ ∠ABD=∠CBD. ∵ DE∥AB, ∴ ∠ABD=∠BDE. ∴ ∠CBD=∠BDE. ∵ ED=EF, ∴ ∠EDF=∠EFD. ∵∠EDF+∠EFD+∠EDB+∠EBD=180°, ∴ ∠BDF=∠BDE+∠EDF=90°. ∴ OD⊥DF. ∵OD是半径, ∴ DF是⊙O的切线. (2)连接DC, ∵ BD是⊙O的直径, ∴ ∠BAD=∠BCD=90°. ∵ ∠ABD=∠CBD,BD=BD, ∴ △ABD≌△CBD. ∴ CD=AD=4,AB=BC. ∵ DE=5, ∴ ,EF=DE=5. ∵ ∠CBD=∠BDE, ∴ BE=DE=5. ∴ ,. ∴ AB=8. ∵ DE∥AB, ∴ △ABF∽△MEF. ∴ . ∴ ME=4. ∴ .  
复制答案
考点分析:
相关试题推荐

如图,在平面直角坐标系中,函数 ,是常数)的图像经过A(26)B(mn),其中m>2.过点A轴垂线,垂足为C,过点作轴垂线,垂足为ACBD交于点E,连结ADCB

1)若的面积为3,求m的值和直线的解析式;

2)求证:

3)若AD//BC ,求点B的坐标

 

 

查看答案

如图,小山坡上有一根垂直于地面的电线杆,小明从地面上的A处测得电线杆顶端点的仰角是45°,后他正对电线杆向前走6米到达B处,测得电线杆顶端点和电线杆底端D点的仰角分别是60°30°.求电线杆的高度(结果保留根号)

 

查看答案

如图,已知RtABD中,∠A90°,将斜边BD绕点B顺时针方向旋转至BC,使BCAD,过点CCEBD于点E

(1)求证:ABD≌△ECB

(2)若∠ABD30°BE=3,求弧CD的长.

 

查看答案

为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的汉字听写大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:

成绩x/

频数

频率

50≤x60

2

0.04

60≤x70

6

0.12

70≤x80

9

80≤x90

 

0.36

90≤x≤100

15

0.30

 

请根据所给信息,解答下列问题:

1a等于多少,b等于多少;       

2)请补全频数分布直方图;

3)这次比赛成绩的中位数会落在哪个分数段;

4)若成绩在90分以上(包括90分)的为等,则该年级参加这次比赛的350名学生中成绩等的约有多少人?

 

查看答案

九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔。

1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是多少.

2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.