如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.
(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;
(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;
(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.
(1)这个班有多少学生?
(2)这批图书共有多少本?
在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB、BC分别交于点M、N,求证:BM=CN.
为了解某校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学;
(4)为了鼓励“低碳生活”,学校为随机抽到的步行或骑自行车上学的学生设计了一个摸奖游戏,具体规则如下:一个不透明的袋子中装着标有数字1、2、3、4的四个完全相同的小球,随机地从四个小球中摸出一球然后放回,再随机地摸出一球,若第二次摸出的小球标有的数字比第一次摸出的小球标有的数字大,则有小礼物赠送,问获得小礼物的概率是多少(用树状图或列表说明)?
如图,▱ABCD的四个顶点都在小方格的顶点上,每个小正方形边长都是1,请画一个与▱ABCD的面积相等的特殊平行四边形,并且满足下列要求
(1)在图甲中画一个矩形; (2)在图乙中画一个菱形.
(注意:四边形的顶点均在方格的顶点上,四边形的边用实数表示,顶点写上字母)
先化简,再求值:(3x+2y)2﹣(3x+y)(3x﹣y),其中x=2,y=3.