有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90o后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30o.
⑴试探究线段BD 与线段MF的数量关系和位置关系,并说明理由;
⑵把△BCD 与△MEF 剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM 于点K(如图2),设旋转角为β(0o<β<90o),当△AFK 为等腰三角形时,求β的度数;
⑶若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.
不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、4
(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率
(2)随机摸出两个小球,直接写出“两次取出的球标号和等于4”的概率.
如图,BE是⊙O的直径,半径OA⊥弦BC,点D为垂足,连AE、EC.
(1)若∠AEC=28°,求∠AOB的度数;
(2)若∠BEA=∠B,EC=3,求⊙O的半径.
解方程:3x2﹣6x+1=2.
若直线y=2x+t﹣3与函数y=的图象有且只有两个公共点时,则t的取值范围是_____.
如图,AB为弓形AB的弦,AB=2,弓形所在圆⊙O的半径为2,点P为弧AB上动点,点I为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为_____.