为满足市场需求,某超市购进一种水果,每箱进价是40元.超市规定每箱售价不得少于45元,根据以往经验发现:当售价定为每箱45元时,每天可以卖出700箱.每箱售价每提高1元,每天要少卖出20箱.
(1)求出每天的销量y(箱)与每箱售价x(元)之间的函数关系式,并直接写出x的范围;
(2)当每箱售价定为多少元时,每天的销售利润w(元)最大?最大利润是多少?
(3)为稳定物价,有关部分规定:每箱售价不得高于70元.如果超市想要每天获得的利润不低于5120元,请直接写出售价x的范围.
如图,△ABC内接于⊙O,AB⊙O的直径,∠ACB的平分线交⊙O于D,连接AD和BD,过点D作DP∥AB交CA的延长线于P.
(1)求证:PD是⊙O的切线;
(2)当AC=6,BC=8时,求CD的长.
有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90o后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30o.
⑴试探究线段BD 与线段MF的数量关系和位置关系,并说明理由;
⑵把△BCD 与△MEF 剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM 于点K(如图2),设旋转角为β(0o<β<90o),当△AFK 为等腰三角形时,求β的度数;
⑶若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.
不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、4
(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率
(2)随机摸出两个小球,直接写出“两次取出的球标号和等于4”的概率.
如图,BE是⊙O的直径,半径OA⊥弦BC,点D为垂足,连AE、EC.
(1)若∠AEC=28°,求∠AOB的度数;
(2)若∠BEA=∠B,EC=3,求⊙O的半径.
解方程:3x2﹣6x+1=2.