满分5 > 初中数学试题 >

已知如图 1,在中,,,点在上,交于,点是的中点. (1)写出线段与线段的关系并...

已知如图 1,在中,,点上,,点的中点.

(1)写出线段与线段的关系并证明;

(2)如图,将绕点逆时针旋转,其它条件不变,线段与线段的关系是否变化,写出你的结论并证明;

(3) 绕点逆时针旋转一周,如果,直接写出线段的范围.

 

(1)结论:FD=FC,DF⊥CF;(2)结论不变.(3)≤BF≤3. 【解析】 (1)根据直角三角形的性质先找出相关角、边的关系,利用等量代换得到结果.(2)旋转前后,图形的性质是不变的,据此可以直接找到旋转前后边角的关系,从而证明结论(3)要使BF最长,只有点E落在AB上即可要使BF最短,只有点E落在AB的延长线即可. (1)结论:FD=FC,DF⊥CF. 理由:如图1中, ∵∠ADE=∠ACE=90°,AF=FE, ∴DF=AF=EF=CF, ∴∠FAD=∠FDA,∠FAC=∠FCA, ∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=∠FAC+∠FCA=2∠FAC, ∵CA=CB,∠ACB=90°, ∴∠BAC=45°, ∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°, ∴DF=FC,DF⊥FC. (2)结论不变. 理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O. ∵BC⊥AM,AC=CM, ∴BA=BM,同法BE=BN, ∵∠ABM=∠EBN=90°, ∴∠NBA=∠EBM, ∴△ABN≌△MBE, ∴AN=EM,∴∠BAN=∠BME, ∵AF=FE,AC=CM, ∴CF=EM,FC∥EM,同法FD=AN,FD∥AN, ∴FD=FC, ∵∠BME+∠BOM=90°,∠BOM=∠AOH, ∴∠BAN+∠AOH=90°, ∴∠AHO=90°, ∴AN⊥MH,FD⊥FC. (3)如图3中,当点E落在AB上时,BF的长最大,最大值=3 如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=. 综上所述,≤BF≤3.
复制答案
考点分析:
相关试题推荐

为满足市场需求,某超市购进一种水果,每箱进价是40元.超市规定每箱售价不得少于45元,根据以往经验发现:当售价定为每箱45元时,每天可以卖出700箱.每箱售价每提高1元,每天要少卖出20箱.

1)求出每天的销量y(箱)与每箱售价x(元)之间的函数关系式,并直接写出x的范围;

2)当每箱售价定为多少元时,每天的销售利润w(元)最大?最大利润是多少?

3)为稳定物价,有关部分规定:每箱售价不得高于70元.如果超市想要每天获得的利润不低于5120元,请直接写出售价x的范围.

 

查看答案

如图,△ABC内接于⊙OAB⊙O的直径,∠ACB的平分线交⊙OD,连接ADBD,过点DDPABCA的延长线于P

1)求证:PD⊙O的切线;

2)当AC6BC8时,求CD的长.

 

查看答案

有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90o后得到矩形AMEF(如图1),连接BDMF,若BD=16cm,∠ADB=30o.

  

⑴试探究线段BD 与线段MF的数量关系和位置关系,并说明理由;

⑵把BCD MEF 剪去,将ABD绕点A顺时针旋转得AB1D1,边AD1FM 于点K(如图2),设旋转角为β(0oβ90o),当AFK 为等腰三角形时,求β的度数;

⑶若将AFM沿AB方向平移得到A2F2M2(如图3)F2M2AD交于点PA2M2BD交于点N,当NPAB时,求平移的距离.

 

查看答案

不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1234

(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率

(2)随机摸出两个小球,直接写出“两次取出的球标号和等于4”的概率.

 

查看答案

如图,BE⊙O的直径,半径OA⊥弦BC,点D为垂足,连AEEC

1)若∠AEC28°,求∠AOB的度数;

2)若∠BEA=∠BEC3,求⊙O的半径.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.