下列各式正确的是( )
A. ±=0.6 B. =±3 C. = D. =-a
抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
(1)求抛物线的解析式;
(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.
已知如图 1,在中,,,点在上,交于,点是的中点.
(1)写出线段与线段的关系并证明;
(2)如图,将绕点逆时针旋转,其它条件不变,线段与线段的关系是否变化,写出你的结论并证明;
(3)将 绕点逆时针旋转一周,如果,直接写出线段的范围.
为满足市场需求,某超市购进一种水果,每箱进价是40元.超市规定每箱售价不得少于45元,根据以往经验发现:当售价定为每箱45元时,每天可以卖出700箱.每箱售价每提高1元,每天要少卖出20箱.
(1)求出每天的销量y(箱)与每箱售价x(元)之间的函数关系式,并直接写出x的范围;
(2)当每箱售价定为多少元时,每天的销售利润w(元)最大?最大利润是多少?
(3)为稳定物价,有关部分规定:每箱售价不得高于70元.如果超市想要每天获得的利润不低于5120元,请直接写出售价x的范围.
如图,△ABC内接于⊙O,AB⊙O的直径,∠ACB的平分线交⊙O于D,连接AD和BD,过点D作DP∥AB交CA的延长线于P.
(1)求证:PD是⊙O的切线;
(2)当AC=6,BC=8时,求CD的长.
有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90o后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30o.
⑴试探究线段BD 与线段MF的数量关系和位置关系,并说明理由;
⑵把△BCD 与△MEF 剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM 于点K(如图2),设旋转角为β(0o<β<90o),当△AFK 为等腰三角形时,求β的度数;
⑶若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.