已知:梯形ABCD中,AD∥BC,AB⊥BC,AD=3,AB=6,DF⊥DC分别交射线AB、射线CB于点E、F.
(1)当点E为边AB的中点时(如图1),求BC的长;
(2)当点E在边AB上时(如图2),联结CE,试问:∠DCE的大小是否确定?若确定,请求出∠DCE的正切值;若不确定,则设AE=x,∠DCE的正切值为y,请求出y关于x的函数解析式,并写出定义域;
(3)当△AEF的面积为3时,求△DCE的面积.
在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,2),它的顶点为D(1,m),且tan∠COD=.
(1)求m的值及抛物线的表达式;
(2)将此抛物线向上平移后与x轴正半轴交于点A,与y轴交于点B,且OA=OB.若点A是由原抛物线上的点E平移所得,求点E的坐标;
(3)在(2)的条件下,点P是抛物线对称轴上的一点(位于x轴上方),且∠APB=45°.求P点的坐标.
已知:如图,在△ABC中,点D在边AB上,点E在线段CD上,且∠ACD=∠B=∠BAE.
(1)求证:;
(2)当点E为CD中点时,求证:.
某学生为测量一棵大树AH及其树叶部分AB的高度,将测角仪放在F处测得大树顶端A的仰角为30°,放在G处测得大树顶端A的仰角为60°,树叶部分下端B的仰角为45°,已知点F、G与大树底部H共线,点F、G相距15米,测角仪高度为1.5米.求该树的高度AH和树叶部分的高度AB.
如图,AD是△ABC的中线,,,.求:(1)BC的长;(2)∠ADC的正弦值.
已知二次函数y=ax2+bx+c(a≠0)的图象过点(1,﹣2)和(﹣1,0)和(0,﹣).
(1)求此二次函数的解析式;
(2)按照列表、描点、连线的步骤,在如图所示的平面直角坐标系内画出该函数的图象(要求至少5点).