直线AB、CD、EF相交于O,则∠1+∠2+∠3=( )
A. 90° B. 120° C. 180° D. 140°
如图,由AB∥CD可以得到( )
A. ∠1=∠2 B. ∠2=∠3 C. ∠1=∠4 D. ∠3=∠4
下列命题中,是假命题的是( )
A. 相等的角是对顶角 B. 若|x|=3,则x=±3
C. 同一平面内,两条直线的位置关系只有相交和平行两种 D. 两点确定一条直线
在平面直角坐标系xOy中,点P的坐标为(,),点Q的坐标为(,),且,,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.下图为点P,Q 的“相关矩形”的示意图.
(1)已知点A的坐标为(1,0).
①若点B的坐标为(3,1)求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;
(2)⊙O的半径为,点M的坐标为(m,3).若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.
在中,,,,于点H,点D在AH上,且,连接BD.
如图1,将绕点H旋转,得到点B、D分别与点E、F对应,连接AE,当点F落在AC上时不与C重合,求AE的长;
如图2,是由绕点H逆时针旋转得到的,射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.
近期猪肉价格不断走高,引起市民与政府的高度关注,当市场猪肉的平均价格达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.
(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%,某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?
(2)5月20日猪肉价格为每千克40元,5月21日,某市决定投入储备猪肉,并规定其销售价格在5月20日每千克40元的基础上下调a%出售,某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了,求a的值.