为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指( )
A.1000名学生
B.被抽取的50名学生
C.1000名学生的身高
D.被抽取的50名学生的身高
下列标志中,是中心对称图形的是( )
A. B. C. D.
如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)在ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.
(1)填空:B′E DE(填“<,=,>”);
(2)求证:B′D∥AC;
(应用与探究)
(3)在ABCD中,已知:BC=4,∠B=60°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是矩形,求AC的长.
如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)求BG的长.
如图,在□ABCD中,点E、F分别在AD、BC边上,且AE=CF,求证:BE//FD.