在△ABC中,AB=4,BC=10,则第三边AC的长可能是( )
A. 5 B. 7 C. 14 D. 16
下列运算正确的是( )
A. a8÷a4=a2 B. (a2)3=a6 C. a2•a3=a6 D. (ab2)3=ab6
(1)阅读并填空:如图①,BD、CD分别是△ABC的内角∠ABC、∠ACB的平分线.
试说明∠D=90°+∠A的理由.
【解析】
因为BD平分∠ABC(已知),
所以∠1= (角平分线定义).
同理:∠2= .
因为∠A+∠ABC+∠ACB=180°,∠1+∠2+∠D=180°,( ),
所以∠D = (等式性质).
即:∠D=90°+∠A.
(2)探究,请直接写出结果,并任选一种情况说明理由:
(i)如图②,BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线.试探究∠D与∠A之间的等量关系.
答:∠D与∠A之间的等量关系是 .
(ii)如图③,BD、CD分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线.试探究∠D与∠A之间的等量关系.
答:∠D与∠A之间的等量关系是 .
小明学习了“第八章 幂的运算”后做这样一道题:若(2x﹣3)x+3=1,求x的值,他解出来的结果为x=2,老师说小明考虑问题不全面,聪明的你能帮助小明解决这个问题吗?
小明解答过程如下:
【解析】
因为1的任何次幂为1,所以2x﹣3=1,x=2.且2+3=5
故(2x﹣3)x+3=(2×2﹣3)2+3=15=1,所以x=2
你的解答是:
(1)已知:2x+3y﹣4=0,求4x8y的值.
(2)先化简,再求值:a3•(﹣b3)+(﹣ab2)3,其中a=,b=4.
如下图,在每个小正方形边长为1的方格纸中,
△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.
(1)请在图中画出平移后的△A′B′C′,
(2)再在图中画出△A′B′C′的高C′D′,并求出△A′B′C′的面积。