(1)长方形的体积为144cm3;(2)纸箱的表面积为792cm2
【解析】
(1)设长方体的高为xcm,则长方形的宽为(12﹣2x)cm,根据长方体的展开图可见产品的一个宽+2个长+一个高=25,从而列出方程,求解得出长方体产品的长宽高,再根据长方体的体积计算方法即可算出答案;
(2)由于产品的长宽高是固定的,厂家设计一种包装纸箱,使每箱能装10件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少,故在装这10件产品时,让产品重叠在一起的面积尽可能的大,从而得出设计的包装纸箱为15×12×8规格,再根据长方体的表面积计算方法即可算出答案.
(1)【解析】
设长方体的高为xcm,则长方形的宽为(12﹣2x)cm,根据题意可得:
12﹣2x+8+x+8=25,
解得:x=3,
所以长方体的高为3cm,宽为6cm,长为8cm,
长方形的体积为:8×6×3=144cm3;
(2)【解析】
由要求没有空隙且要使该纸箱所用材料尽可能少(纸箱的表面积尽可能小),可知纸箱的装法有两种,即每层一个共10层或每层两个共5层,
①每层一个共10层:
(ⅰ)当3×6的面叠加在一起时,
表面积为2(3×6+3×80+6×80)=1476cm2,
(ⅱ)当3×8的面叠加在一起时,
表面积为2(3×8+3×60+8×60)=1368cm2,
(ⅲ)当6×8的面叠加在一起时,
表面积为2(30×8+30×6+8×6)=936cm2,
②每层两个共5层:
(ⅰ)当每一层的两个长方体的3×6的面叠加在一起时,且底层的长方体的3×8的面贴地面时,
表面积为2(3×16+3×30+16×30)=1236cm2,
(ⅱ)当每一层的两个长方体的3×6的面叠加在一起时,且底层的长方体的6×8的面贴地面时,
表面积为2(6×16+6×15+16×15)=852cm2,
(ⅲ)当每一层的两个长方体的3×8的面叠加在一起时,且底层的长方体的3×6的面贴地面时,
表面积为2(3×12+3×40+12×40)=1272cm2,
(ⅳ)当每一层的两个长方体的3×8的面叠加在一起时,且底层的长方体的8×6的面贴地面时,
表面积为2(12×8+8×15+12×15)=792cm2,
(ⅴ)当每一层的两个长方体的8×6的面叠加在一起时,且底层的长方体的8×3的面贴地面时,
表面积为2(6×8+6×30+8×30)=936cm2,
(ⅵ)当每一层的两个长方体的8×6的面叠加在一起时,且底层的长方体的6×3的面贴地面时,
表面积为2(6×6+6×40+6×40)=1032cm2,
所以当每一层的两个长方体的3×8的面叠加在一起时,且底层的长方体的8×6的面贴地面时,表面积最小,为792cm2,设计的包装纸箱为长为12cm,宽为8cm,高为15cm.
故答案为:792cm2