满分5 > 初中数学试题 >

如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,...

如图,抛物线yx2+bx+cx轴交于点AB30),与y轴交于点C03).

1)求抛物线的解析式;

2)若点M是抛物线上在x轴下方的动点,过MMNy轴交直线BC于点N,求线段MN的最大值;

3E是抛物线对称轴上一点,F是抛物线上一点,是否存在以ABEF为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.

 

(1) y=x2﹣4x+3;(2);(3)见解析. 【解析】 (1)利用待定系数法进行求解即可; (2)设点M的坐标为(m,m2﹣4m+3),求出直线BC的解析,根据MN∥y轴,得到点N的坐标为(m,﹣m+3),由抛物线的解析式求出对称轴,继而确定出1<m<3,用含m的式子表示出MN,继而利用二次函数的性质进行求解即可; (3)分AB为边或为对角线进行讨论即可求得. (1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中, 得:, 解得:, 故抛物线的解析式为y=x2﹣4x+3; (2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3, 把点B(3,0)代入y=kx+3中, 得:0=3k+3,解得:k=﹣1, ∴直线BC的解析式为y=﹣x+3, ∵MN∥y轴, ∴点N的坐标为(m,﹣m+3), ∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1, ∴抛物线的对称轴为x=2, ∴点(1,0)在抛物线的图象上, ∴1<m<3. ∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣)2+, ∴当m=时,线段MN取最大值,最大值为; (3)存在.点F的坐标为(2,﹣1)或(0,3)或(4,3). 当以AB为对角线,如图1, ∵四边形AFBE为平行四边形,EA=EB, ∴四边形AFBE为菱形, ∴点F也在对称轴上,即F点为抛物线的顶点, ∴F点坐标为(2,﹣1); 当以AB为边时,如图2, ∵四边形AFBE为平行四边形, ∴EF=AB=2,即F2E=2,F1E=2, ∴F1的横坐标为0,F2的横坐标为4, 对于y=x2﹣4x+3, 当x=0时,y=3; 当x=4时,y=16﹣16+3=3, ∴F点坐标为(0,3)或(4,3), 综上所述,F点坐标为(2,﹣1)或(0,3)或(4,3).
复制答案
考点分析:
相关试题推荐

已知菱形ABCD的边长为1.∠ADC60°,等边△AEF两边分别交边DCCB于点EF

1)特殊发现:如图1,若点EF分别是边DCCB的中点.求证:菱形ABCD对角线ACBD交点O即为等边△AEF的外心;

2)若点EF始终分别在边DCCB上移动.记等边△AEF的外心为点P

猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;

拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值?若是,请求出该定值;若不是,请说明理由.

 

查看答案

某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按ABCD四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:

(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)

1)请把条形统计图补充完整;

2)扇形统计图中D级所在的扇形的圆心角度数是多少?

3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?

 

查看答案

如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点BCE在同一水平直线上).已知AB80mDE10m,求障碍物BC两点间的距离.(结果保留根号)

 

查看答案

一次函数的图象经过点A21)和点B02).

1)求出函数的关系式;

2)在平面置角坐标系内画一次函数的图象,回答下列问题:

y的值随着x的值的增大而     ,它的图象与x轴的交点坐标是     

下列点在一次函数图象上的是     

1),(﹣23),(6,﹣5

x     ,时,y0

 

查看答案

解不等式组,并将解集在数轴上表示出来.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.