下列现象是数学中的平移的是( )
A. 树叶从树上落下 B. 电梯从底楼升到顶楼
C. 碟片在光驱中运行 D. 卫星绕地球运动
下列各组数据中,能构成三角形的是( )
A. 1cm、2cm、3cm B. 2cm、3cm、4cm
C. 4cm、9cm、4cm D. 2cm、1cm、4cm
下列计算正确的是( )
A. B.
C. D.
如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.
某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
●操作发现:
在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是 (填序号即可)
①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.
●数学思考:
在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;
●类比探索:
在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.
答: .
某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务所有债务均不计利息已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量件与销售价元件之间的关系可用图中的一条折线实线来表示该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元不包含债务.
求日销售量件与销售价元件之间的函数关系式;
若该店暂不考虑偿还债务,当某天的销售价为48元件时,当天正好收支平衡收人支出,求该店员工的人数;
若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?