满分5 > 初中数学试题 >

(本小题满分9分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABC...

(本小题满分9分)如图,在矩形ABCD中,EAB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长APCDF点,

1)求证:四边形AECF为平行四边形;

2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC

3)若矩形ABCD的边AB=6BC=4,求△CPF的面积.

 

(1)证明见试题解析;(2)证明见试题解析;(3). 【解析】 试题(1)由折叠的性质得到BE=PE,EC⊥PB,根据E为AB中点,得到AE=PE,利用等角对等边得到两对角相等,利用外角性质得到∠AEP=2∠EPB,设∠EPB=x,则∠AEP=2x,表示出∠APE,由∠APE+∠EPB得到∠APB为90°,进而得到AF与EC平行,再由AE与FC平行,利用两对边平行的四边形为平行四边形即可得证; (2)根据等边三角形性质,得到△AEP三条边相等,三内角相等,再由折叠的性质及邻补角定义得到一对角相等,根据同角的余角相等得到一对角相等,再由AP=EB,利用AAS即可得证; (3)过P作PM⊥CD,在Rt△EBC中,利用勾股定理求出EC,利用面积求出BQ,再根据BP=2BQ求出BP,在Rt△ABP中,利用勾股定理求出AP,根据AF-AP求出PF,由PM与AD平行,得到△PMF与△ADF相似,由相似得比例求出PM,再由FC=AE=3,求出△CPF面积即可. 试题解析:(1)由折叠得到BE=PE,EC⊥PB,∵E为AB的中点,∴AE=EB,即AE=PE,∴∠EBP=∠EPB,∠EAP=∠EPA,∵∠AEP为△EBP的外角,∴∠AEP=2∠EPB,设∠EPB=x,则∠AEP=2x,∠APE==90°﹣x,∴∠APB=∠APE+∠EPB=x+90°﹣x=90°,即BP⊥AF,∴AF∥EC,∵AE∥FC,∴四边形AECF为平行四边形; (2)∵△AEP为等边三角形,∴∠BAP=∠AEP=60°,AP=AE=EP=EB,∵∠PEC=∠BEC,∴∠PEC=∠BEC=60°,∵∠BAP+∠ABP=90°,∠ABP+∠BEQ=90°,∴∠BAP=∠BEQ,在△ABP和△EBC中,∵∠APB=∠EBC=90°,∠BAP=∠BEQ,AP=EB,∴△ABP≌△EBC(AAS),∵△EBC≌△EPC,∴△ABP≌△EPC; (3)过P作PM⊥DC,交DC于点M,在Rt△EBC中,EB=3,BC=4,根据勾股定理得:EC==5,∵S△EBC=EB•BC=EC•BQ,∴BQ==,由折叠得:BP=2BQ=,在Rt△ABP中,AB=6,BP=,根据勾股定理得:AP==,∵四边形AECF为平行四边形,∴AF=EC=5,FC=AE=3,∴PF==,∵PM∥AD,∴,即,解得:PM=,则S△PFC=FC•PM==.
复制答案
考点分析:
相关试题推荐

10分)如图,一次函数与反比例函数的图象交于A14),B4n)两点.

1)求反比例函数的解析式;

2)求一次函数的解析式;

3)点Px轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.

 

查看答案

如图,ABC中,AB=AC,ADBC,CEAB,AE=CE.求证:

(1)AEF≌△CEB;

(2)AF=2CD.

 

查看答案

某校组织了一次初三科技小制作比赛,有A.B.C,D四个班共提供了100件参赛作品. C班提供的

参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚不完整的统

计图中 .

(1)B班参赛作品有多少件?

(2)请你将图②的统计图补充完整;

(3)通过计算说明,哪个班的获奖率高?

(4)将写有A,B,C,D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A,B两班的概率 .

 

查看答案

如图,海中一小岛上有一个观测点A,某天上午900观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午930观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B处开始航行多少小时,离观测点A的距离最近?(计算结果用根号表示,不取近似值).

 

查看答案

1)计算:(1π0×+|﹣2|.(2)解方程:

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.