满分5 > 初中数学试题 >

(2017·山东德州)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家...

(2017·山东德州)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1米处达到最高,水柱落地处离池中心.

(1)请你建立适当的直角坐标系,并求出水柱抛物线的函数解析式;

(2)求出水柱的最大高度是多少?

 

(1)y=(0≤x≤3);(2)抛物线水柱的最大高度为米. 【解析】试题(1)以水管和地面交点为原点,原点与水柱落地点所在直线为x轴适当的直角坐标系,利用顶点式y=a(x-1)2+k,求解析式 (2)利用顶点式y=-(x-1)2+(0≤x≤3),知顶点坐标(1,),从而求出水柱的最大高度是米。 试题解析:(1)如图,以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系. 由题意可设抛物线的函数解析式为y=a(x-1)2+h(0≤x≤3) 抛物线过点(0,2)和(3,0),代入抛物线解析式得: 解得: 所以,抛物线的解析式为:y=-(x-1)2+(0≤x≤3), 化为一般形式为:y=-(0≤x≤3) (2)由(1)知抛物线的解析式为y=-(x-1)2+(0≤x≤3), 当x=1时,y=, 所以,抛物线水柱的最大高度为m.
复制答案
考点分析:
相关试题推荐

如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10 m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9 s,已知∠B=30°,∠C=45°.

(1)求B,C之间的距离; (保留根号)

(2)如果此地限速为80 km/h,那么这辆汽车是否超速?请说明理由.(参考数据:≈1.7,≈1.4)

 

查看答案

如图,已知RtABC中,∠C=90°,DBC的中点,以AC为直径的⊙OAB于点E.

(1)求证:DEO的切线;

(2)若AE:EB=1:2,BC=6,求⊙O的半径.

 

查看答案

(2017山东德州第19题)随若移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A .和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调査,得到如下图表(部分信息未给出):

根据以上信息解答下列问题:

(1)这次被调查的学生有多少人?

(2)求表中m,n,p的值,并补全条形统计图;

(3)若该中学约有名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?

并根据以上调査结果,就中学生如何合理使用手机给出你的一条建议.

 

查看答案

先化简,再求值: ÷3,其中a=

 

查看答案

某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(FG为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.