满分5 > 初中数学试题 >

(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥B...

1)如图1,在矩形ABCD中,对角线ACBD相交于点O,过点O作直线EFBD,且交AD于点E,交BC于点F,连接BEDF,且BE平分∠ABD

①求证:四边形BFDE是菱形;

②直接写出∠EBF的度数.

2)把(1)中菱形BFDE进行分离研究,如图2GI分别在BFBE边上,且BGBI,连接GDHGD的中点,连接FH,并延长FHED于点J,连接IJIHIFIG.试探究线段IHFH之间满足的关系,并说明理由;

3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足ABAD时,点E是对角线AC上一点,连接DE,作EFDE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AGGEEC三者之间满足的数量关系.

 

(1)①详见解析;②60°.(2)IH=FH;(3)EG2=AG2+CE2. 【解析】 (1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可. ②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题. (2)IH=FH.只要证明△IJF是等边三角形即可. (3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题. (1)①证明:如图1中, ∵四边形ABCD是矩形, ∴AD∥BC,OB=OD, ∴∠EDO=∠FBO, 在△DOE和△BOF中, , ∴△DOE≌△BOF, ∴EO=OF,∵OB=OD, ∴四边形EBFD是平行四边形, ∵EF⊥BD,OB=OD, ∴EB=ED, ∴四边形EBFD是菱形. ②∵BE平分∠ABD, ∴∠ABE=∠EBD, ∵EB=ED, ∴∠EBD=∠EDB, ∴∠ABD=2∠ADB, ∵∠ABD+∠ADB=90°, ∴∠ADB=30°,∠ABD=60°, ∴∠ABE=∠EBO=∠OBF=30°, ∴∠EBF=60°. (2)结论:IH=FH. 理由:如图2中,延长BE到M,使得EM=EJ,连接MJ. ∵四边形EBFD是菱形,∠B=60°, ∴EB=BF=ED,DE∥BF, ∴∠JDH=∠FGH, 在△DHJ和△GHF中, , ∴△DHJ≌△GHF, ∴DJ=FG,JH=HF, ∴EJ=BG=EM=BI, ∴BE=IM=BF, ∵∠MEJ=∠B=60°, ∴△MEJ是等边三角形, ∴MJ=EM=NI,∠M=∠B=60° 在△BIF和△MJI中, , ∴△BIF≌△MJI, ∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF, ∴IH⊥JF, ∵∠BFI+∠BIF=120°, ∴∠MIJ+∠BIF=120°, ∴∠JIF=60°, ∴△JIF是等边三角形, 在Rt△IHF中,∵∠IHF=90°,∠IFH=60°, ∴∠FIH=30°, ∴IH=FH. (3)结论:EG2=AG2+CE2. 理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM, ∵∠FAD+∠DEF=90°, ∴AFED四点共圆, ∴∠EDF=∠DAE=45°,∠ADC=90°, ∴∠ADF+∠EDC=45°, ∵∠ADF=∠CDM, ∴∠CDM+∠CDE=45°=∠EDG, 在△DEM和△DEG中, , ∴△DEG≌△DEM, ∴GE=EM, ∵∠DCM=∠DAG=∠ACD=45°,AG=CM, ∴∠ECM=90° ∴EC2+CM2=EM2, ∵EG=EM,AG=CM, ∴GE2=AG2+CE2.
复制答案
考点分析:
相关试题推荐

某工厂准备购买AB两种零件,已知A种零件的单价比B种零件的单价多30元,而用900元购买A种零件的数量和用600元购买B种零件的数量相等.

1)求AB两种零件的单价;

2)根据需要,工厂准备购买AB两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?

 

查看答案

如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.

(1)求证:BG=CF;

(2)请你判断BE+CF与EF的大小关系,并说明理由.

 

查看答案

已知有理数m,n满足(m+n)2=9,(m-n)2=1.求下列各式的值.

(1)mn;         (2)m2+n2-mn.

 

查看答案

如图,在平面直角坐标系中,点O为坐标原点,已知ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).

(1)画出ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标;

(2)画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,△CC1C2的面积.

 

查看答案

先化简,再求值: ,其中

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.