满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A...

如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点AABx轴,垂足为点A,过点CCBy轴,垂足为点C,两条垂线相交于点B

1)线段ABBCAC的长分别为AB     BC     AC     

2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DEAB于点D,交AC于点E,连接CD,如图2

请从下列AB两题中任选一题作答,我选择     题.

A求线段AD的长;

y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.

B求线段DE的长;

在坐标平面内,是否存在点P(除点B外),使得以点APC为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

 

(1)8,4,4;(2)①AD=5;②P(0,2)或(0,8). 【解析】 试题(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC; (2)A.①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论; ②分三种情况利用方程的思想即可得出结论; B.①利用折叠的性质得出AE,利用勾股定理即可得出结论; ②先判断出∠APC=90°,再分情况讨论计算即可. 试题解析:解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8.∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4.在Rt△ABC中,根据勾股定理得,AC==4.故答案为:8,4,4; (2)选A.①由(1)知,BC=4,AB=8,由折叠知,CD=AD.在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5; ②由①知,D(4,5),设P(0,y).∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2.∵△APD为等腰三角形,∴分三种情况讨论: Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3); Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,); Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8). 综上所述:P(0,3)或(0,﹣3)或P(0,)或P(0,2)或(0,8). 选B.①由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E.在Rt△ADE中,DE==; ②∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°.∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0); 如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(),而点P2与点O关于AC对称,∴P2(),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣). 综上所述:满足条件的点P的坐标为:(0,0),(),(﹣).
复制答案
考点分析:
相关试题推荐

某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:

x/元

15

20

25

y/件

25

20

15

 

已知日销售量y是销售价x的一次函数

(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;

(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?

 

查看答案

已知:如图,正方形ABCDBMDN分别是正方形的两个外角平分线,∠MAN45°,将∠MAN绕着正方形的顶点A旋转,边AMAN分别交两条角平分线于点MN,联结MN

1)求证:△ABM∽△NDA

2)联结BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.

 

查看答案

已知:如图,在O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD30°,且BE2,求弦CD的长.

 

查看答案

为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母ABC表示这三个材料),将ABC分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.

1)小礼诵读《论语》的概率是     ;(直接写出答案)

2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.

 

查看答案

某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60m100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.

征文比赛成绩频数分布表

分数段

频数

频率

60m70

38

0.38

70m80

a

0.32

80m90

b

c

90m100

10

0.1

合计

 

1

 

请根据以上信息,解决下列问题:

1)征文比赛成绩频数分布表中c的值是     

2)补全征文比赛成绩频数分布直方图;

3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.