下列四个数中,最小的数是
A. 2 B. 0 C. D.
如图,在平面直角坐标系中,抛物线y=﹣x2+3x与x轴交于O、A两点,与直线y=x交于O、B两点,点A、B的坐标分别为(3,0)、(2,2).点P在抛物线上,且不与点O、B重合,过点P作y轴的平行线交射线OB于点Q,以PQ为边作R△PQN,点N与点B始终在PQ同侧,且PN=1.设点P的横坐标为m(m>0),PQ长度为d.
(1)用含m的代数式表示点P的坐标.
(2)求d与m之间的函数关系式.
(3)当△PQN是等腰直角三角形时,求m的值.
(4)直接写出△PQN的边与抛物线有两个交点时m的取值范围.
已知:在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点.若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的异侧作正方形PQMN,记正方形PQMN与矩形EDBF的公共部分的面积为y.
(1)如图,当AP=3cm时,求y的值;
(2)设AP=xcm,试用含x的代数式表示y(cm2);
(3)当y=2cm2时,试确定点P的位置.
感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.
探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.
应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC= (用含a的代数式表示)
方格纸中每个小正方形的边长都是单位1,△OAB在平面直角坐标系中的位置如图所示,解答问题:
(1)请按要求对△OAB作变换:以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△OA′B′.
(2)写出点A′的坐标;
(3)求△OA′B'的面积.
(7分)如图,在一滑梯侧面示意图中,BD∥AF,BC⊥AF于点C,DE⊥AF于
点E.BC=1.8m,BD=0.5m,∠A=45º,∠F=29º.
(1)求滑道DF的长(精确到0.1m);
(2)求踏梯AB底端A与滑道DF底端F的距离AF(精确到0.1m).
(参考数据:sin29º≈0.48,cos29º≈0.87,tan29º≈0.55)