如图,小明从左面看在水平讲台上放置的圆柱形水杯和长方体形粉笔盒看到的是
A. B. C. D.
下列手机软件图标中,既是轴对称图形又是中心对称图形的是
A. B. C. D.
下列运算正确的是
A. B. C. D.
在,0,1,-2这四个数中,最小的数是( )
A. B. 0 C. 1 D. -2
如图,在平行四边形ABCD中,过点B作BE∥AC,在BG上取点E,连接DE交AC的延长线于点F.
(1)求证:DF=EF;
(2)如果AD=2,∠ADC=60°,AC⊥DC于点C,AC=2CF,求BE的长.
清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》,对“三边长为3,4,5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现代的数学语言表述是:“若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S,则求其边长的方法为:第一步:=;第二步:=k;第三步:分别用3,4,5乘以,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.