在△ABC中,AB=AC,BC=2,将△ABC绕点C顺针方向旋转α(0°<α<360°),得到△DEC,使点E在AB边上。
(1)如图1,连接AD,
①求证:四边形ABCD是平行四边形;
② 当AE=AD时,求旋转角α的度数;
(2)如图2,若AE=2BE,求AB的长。
如图,在△ABC中,AC=BC=6,∠ACB>90°,∠ABC的平分线交AC于点D,E是AB上一点,且BE=BC,CF∥ED交BD于点F,连接EF,ED.
(1)求证:四边形CDEF是菱形.
(2)当∠ACB= 度时,四边形CDEF是正方形,请给予证明;并求此时正方形的边长。
如图(1)是某公园里的一种健身器材,其侧面示意图如图(2)所示,其中AB=AC=120cm,BC=80cm,AD=30cm,∠DAC=90°.求点D到地面的高度是多少?
直线y=kx与反比例函数y=(x>0)的图象相交点D(,m),将直线y=kx向上平移b个单位长度与反比例函数的图象交于点A,与y轴交于点B,与x轴交于点C,且,求平移后的直线的表达式.
在Rt△ABC中,∠ACB=90°,AC=2BC, 将△ABC绕点O按逆时针方向旋转90°得到△DEF,点A,B,C的对应点分别是点D,E,F.请仅用无刻度直尺分别在下面图中按要求画出相应的点(保留画图痕迹).
(1).如图1,当点O为AC的中点时,画出BC的中点N;
(2).如图2, 旋转后点E恰好落在点C,点F落在AC上,点N是BC的中点,画出旋转中心O.
某校举行全员赛课比赛,八年级3位数学老师分别记为A,B,C,(其中A是女老师,B,C是男老师)被安排在星期二下午三节上,他们通过抽签决定上课顺序。
(1)女老师A不希望上第一节课,却偏偏抽到上第一节课的概率是
(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求女老师A比男老师B先上课的概率.