满分5 > 初中数学试题 >

某宾馆有若干间住房,住宿记录提供了如下信息: (1)4月17日全部住满,一天住宿...

某宾馆有若干间住房,住宿记录提供了如下信息:

1417日全部住满,一天住宿费收入为12000元;

2418日有20间房空着,一天住宿费收入为9600元;

3)该宾馆每间房每天收费标准相同.

①一个分式方程,求解该宾馆共有多少间住房,每间住房每天收费多少元?

②通过市场调查发现,每间住房每天的定价每增加10元,就会有5个房间空闲;已知该宾馆空闲房间每天每间支出费用10元,有顾客居住房间每天每间支出费用20元,问房价定为多少元时,该宾馆一天的利润为11000元?(利润=住宿费收入﹣支出费用)

③在(2)的计算基础上,你能发现房价定为多少元时,该宾馆一天的利润最大?请直接写出结论.

 

①100间,120元;②160元或170元,11000元;③165元, 11012.5元. 【解析】 ①设每间住房每天收费x元,由信息(1)可知该宾馆共有住房间,由信息(2)可知该宾馆有顾客居住的房间间,根据该宾馆的住房间数不变列出分式方程,求解即可; ②根据利润的计算方法,设每间房的房价为y元,分别表示每间利润和住房间数及支出费用,根据该宾馆一天的利润为11000元得方程求解; ③设房价定为每间a元时,该宾馆一天的利润为w元,根据利润的计算方法,列出w关于a的函数关系式,再根据函数的性质即可求解. 【解析】 ①设每间住房每天收费x元,根据题意,得 , 解得x=120, 经经验,x=120是原方程的根. 12000÷120=100. 答:该宾馆共有100间住房,每间住房每天收费120元; ②设每间房的房价为y元,根据题意,得 (y﹣20)(100﹣×5)﹣10××5=11000, 解得:y1=160,y2=170. 答:房价定为160元或170元时,该宾馆一天的利润为11000元. ③设房价定为每间a元时,该宾馆一天的利润为w元,根据题意,得 w=(a﹣20)(100﹣×5)﹣10××5 =﹣a2+165a﹣2600 =﹣(a﹣165)2+11012.5, ∴当房价定为165元时,该宾馆一天的利润最大,为11012.5元.
复制答案
考点分析:
相关试题推荐

我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.

1)完成下列填空:

已知

填空

5+2     3+1

31     52

12     4+1

 

2)一般地,如果那么a+c     b+d(用填空).请你说明上述性质的正确性.

 

查看答案

已知RtABC,∠BAC90°,点DBC中点,ADACBC4,过AD两点作⊙O,交AB于点E

1)求弦AD的长;

2)如图1,当圆心OAB上且点M是⊙O上一动点,连接DMAB于点N,求当ON等于多少时,三点DEM组成的三角形是等腰三角形?

3)如图2,当圆心O不在AB上且动圆⊙ODB相交于点Q时,过DDHAB(垂足为H)并交⊙O于点P,问:当⊙O变动时DPDQ的值变不变?若不变,请求出其值;若变化,请说明理由.

 

查看答案

如图,在RtABC中,∠BAC90°BC5AB3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点NAC的中点,连接NE,当线段NE最短时,线段CD的长为_____

 

查看答案

化简:2x4时,_____

 

查看答案

如图,已知反比例函数y的图象与一次函数yx+b的图象交于点A14),点B(﹣4n).

1)求nb的值;

2)求OAB的面积;

3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.