满分5 > 初中数学试题 >

如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两...

如图,已知抛物线y=﹣x2+bx+c与一直线相交于A10)、C(﹣23)两点,与y轴交于点N,其顶点为D

1)求抛物线及直线AC的函数关系式;

2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;

3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.

 

(1)y=﹣x2﹣2x+3;y=﹣x+1;(2)当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,);(3)在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3. 【解析】 (1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S△APC=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论. (1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得: ,解得:, ∴抛物线的函数关系式为y=﹣x2﹣2x+3; 设直线AC的函数关系式为y=mx+n(m≠0), 将A(1,0),C(﹣2,3)代入y=mx+n,得: ,解得:, ∴直线AC的函数关系式为y=﹣x+1. (2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示. 设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1), ∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2. ∵点C的坐标为(﹣2,3), ∴点Q的坐标为(﹣2,0), ∴AQ=1﹣(﹣2)=3, ∴S△APC=AQ•PF=﹣x2﹣x+3=﹣(x+)2+ . ∵﹣<0, ∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣, ). (3)当x=0时,y=﹣x2﹣2x+3=3, ∴点N的坐标为(0,3). ∵y=﹣x2﹣2x+3=﹣(x+1)2+4, ∴抛物线的对称轴为直线x=﹣1. ∵点C的坐标为(﹣2,3), ∴点C,N关于抛物线的对称轴对称. 令直线AC与抛物线的对称轴的交点为点M,如图2所示. ∵点C,N关于抛物线的对称轴对称, ∴MN=CM, ∴AM+MN=AM+MC=AC, ∴此时△ANM周长取最小值. 当x=﹣1时,y=﹣x+1=2, ∴此时点M的坐标为(﹣1,2). ∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3), ∴AC= =3,AN= =, ∴C△ANM=AM+MN+AN=AC+AN=3+. ∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.
复制答案
考点分析:
相关试题推荐

某宾馆有若干间住房,住宿记录提供了如下信息:

1417日全部住满,一天住宿费收入为12000元;

2418日有20间房空着,一天住宿费收入为9600元;

3)该宾馆每间房每天收费标准相同.

①一个分式方程,求解该宾馆共有多少间住房,每间住房每天收费多少元?

②通过市场调查发现,每间住房每天的定价每增加10元,就会有5个房间空闲;已知该宾馆空闲房间每天每间支出费用10元,有顾客居住房间每天每间支出费用20元,问房价定为多少元时,该宾馆一天的利润为11000元?(利润=住宿费收入﹣支出费用)

③在(2)的计算基础上,你能发现房价定为多少元时,该宾馆一天的利润最大?请直接写出结论.

 

查看答案

我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.

1)完成下列填空:

已知

填空

5+2     3+1

31     52

12     4+1

 

2)一般地,如果那么a+c     b+d(用填空).请你说明上述性质的正确性.

 

查看答案

已知RtABC,∠BAC90°,点DBC中点,ADACBC4,过AD两点作⊙O,交AB于点E

1)求弦AD的长;

2)如图1,当圆心OAB上且点M是⊙O上一动点,连接DMAB于点N,求当ON等于多少时,三点DEM组成的三角形是等腰三角形?

3)如图2,当圆心O不在AB上且动圆⊙ODB相交于点Q时,过DDHAB(垂足为H)并交⊙O于点P,问:当⊙O变动时DPDQ的值变不变?若不变,请求出其值;若变化,请说明理由.

 

查看答案

如图,在RtABC中,∠BAC90°BC5AB3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点NAC的中点,连接NE,当线段NE最短时,线段CD的长为_____

 

查看答案

化简:2x4时,_____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.