如图,一次函数的图象与反比例函数的图象交于,,两点.
(1)求该反比例函数的解析式;
(2)求的值及该一次函数的解析式.
小方与小辉在玩军棋游戏,他们定义了一种新的规则,用军棋中的“工兵”、“连长”、“地雷”比较大小,共有6个棋子,分别为1个“工兵”,2个“连长”,3个“地雷”游戏规则如下:①游戏时,将棋反面朝上,两人随机各摸一个棋子进行比赛,先摸者摸出的棋不放回;②“工兵”胜“地雷”,“地雷”胜“连长”,“连长”胜“工兵”;③相同棋子不分胜负.
(1)若小方先摸,则小方摸到“排长”的事件是 ;若小方先摸到了“连长”,小辉在剩余的5个棋子中随机摸一个,则这一轮中小方胜小辉的概率为 .
(2)如果先拿走一个“连长”,在剩余的5个棋子中小方先摸一个棋子,然后小辉在剩余的4个棋子中随机摸一个,求这一轮中小方获胜的概率 .
已知关于x的方程x2+mx+m﹣2=0.
(1)若此方程的一个根为1,求m的值;
(2)求证:不论m取何实数,此方程都有两个不相等的实数根.
如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E,连接AD,BC,CO
(1)当∠BCO=25°时,求∠A的度数;
(2)若CD=4,BE=4,求⊙O的半径.
如图,已知抛物线y=﹣x2+bx+c的部分图象,A(1,0),B(0,3).
(1)求抛物线的解析式;
(2)若抛物线与x轴的另一个交点是C点,求△ABC的面积.
如图,△ABC与△ADE都是等腰直角三角形,连接CD、BE,CD、BE相交于点O,△BAE可看作是由△CAD顺时针旋转所得.
(1)旋转中心是 ,旋转角度是 ;
(2)判断CD与BE的位置关系,并说明理由.