下列实数是无理数的是
A. B. C. D.
如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)仔细观察,在图2中有 个以线段AC为边的“8字形”;
(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数;
(3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠D、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;
(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为 .
阅读以下材料:
对数的创始人是苏格兰数学家纳皮尔,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系。
对数的定义:一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=logaN.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.
我们根据对数的定义可得到对数的一个性质:loga(M•N)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:
设logaM=m,logaN=n,则M=am,N=an
∴M•N=am•an=am+n,由对数的定义得m+n=loga(M•N)
又∵m+n=logaM+logaN
∴loga(M•N)=logaM+logaN
解决以下问题:
(1)将指数43=64转化为对数式_____;
(2)证明loga=logaM﹣logaN(a>0,a≠1,M>0,N>0)
(3)拓展运用:计算log32+log36﹣log34=_____.
如图,四边形ABCD是一个工件的平面图,它要求AD和BC这两边的夹角应等于30°.甲、乙、丙三个工人在检验工件是否合格时,发生了以下争论:
甲:要检验工件是否合格,应延长AD和BC,设交点为O,然后检验∠O是否等于30°.
乙:这样太麻烦了,我看只需测量出∠A和∠B的度数就行了.
丙:量出∠C和∠D的度数也可以检验AD和BC的夹角是否等于30°.
请你用所学过的知识,说明乙、丙两人的方法是否正确.
已知n边形的内角和θ=(n-2)×180°.
(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;
(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.
我们约定,如: .
(1)试求和的值;
(2)想一想,是否与相等,并说明理由.