如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.
(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;
(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)
如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.
求证:(1)△ADF∽△EDB;
(2)CD2=DE•DF.
袋中有一个红球和两个自球,它们除颜色外其余都相同,任意摸出一球,记下球的颜色,放回袋中,搅匀后再任意摸出一球,记下它的颜色.
(1)请把树状图填写完整.
(2)根据树状图求出两次都摸到白球的概率.
已知:点P是正方形内一点,△ABP旋转后能与△CBE重合.
(1)△ABP旋转的旋转中心是什么?旋转了多少度?
(2)若BP=2,求PE的长.
解方程:3(x﹣4)2=﹣2(x﹣4)
如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为_____(结果保留π).