满分5 > 初中数学试题 >

(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,...

(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.

(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.

 

(1)证明见解析;(2)成立;证明见解析; 【解析】 试题(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA, 则AE=BD,AD=CE,于是DE=AE+AD=BD+CE; (2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案. 试题解析:(1)∵BD⊥直线m,CE⊥直线m, ∴∠BDA=∠CEA=90°, ∵∠BAC=90°, ∴∠BAD+∠CAE=90°, ∵∠BAD+∠ABD=90°, ∴∠CAE=∠ABD, ∵在△ADB和△CEA中, , ∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴DE=AE+AD=BD+CE; (2)∵∠BDA=∠BAC=α, ∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α, ∴∠CAE=∠ABD, ∵在△ADB和△CEA中, , ∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴DE=AE+AD=BD+CE.  
复制答案
考点分析:
相关试题推荐

如图,在中,的垂直平分线于点,交于点

1)若,求的度数;

2)若的周长为,求的长.

 

查看答案

2016双十一期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.

(1)求甲、乙两种车辆单独完成任务分别需要多少天?

(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.

 

查看答案

如图所示的坐标系中,的三个顶点的坐标依次为

1)请写出关于轴对称的点的坐标;

2)请在这个坐标系中作出关于轴对称的

3)计算:的面积.

 

查看答案

先化简,再求值:(x2+)÷,其中x=﹣

 

查看答案

解分式方程:

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.