满分5 > 初中数学试题 >

菱形ABCD中、∠BAD=120°,点O为射线CA 上的动点,作射线OM与直线B...

菱形ABCD中、∠BAD120°,点O为射线CA 上的动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F

1)如图①,点O与点A重合时,点EF分别在线段BCCD上,请直接写出CECFCA三条段段之间的数量关系;

2)如图②,点OCA的延长线上,且OAACEF分别在线段BC的延长线和线段CD的延长线上,请写出CECFCA三条线段之间的数量关系,并说明理由;

3)点O在线段AC上,若AB6BO2,当CF1时,请直接写出BE的长.

 

(1)CA=CE+CF.(2)CF-CE=AC.(3)BE的值为3或5或1. 【解析】 (1)如图①中,结论:CA=CE+CF.只要证明△ADF≌△ACE(SAS)即可解决问题; (2)结论:CF-CE=AC.如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.只要证明△FOG≌△EOC(ASA)即可解决问题; (3)分四种情形画出图形分别求解即可解决问题. (1)如图①中,结论:CA=CE+CF. 理由:∵四边形ABCD是菱形,∠BAD=120° ∴AB=AD=DC=BC,∠BAC=∠DAC=60° ∴△ABC,△ACD都是等边三角形, ∵∠DAC=∠EAF=60°, ∴∠DAF=∠CAE, ∵CA=AD,∠D=∠ACE=60°, ∴△ADF≌△ACE(SAS), ∴DF=CE, ∴CE+CF=CF+DF=CD=AC, ∴CA=CE+CF. (2)结论:CF-CE=AC. 理由:如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形. ∵∠GOC=∠FOE=60°, ∴∠FOG=∠EOC, ∵OG=OC,∠OGF=∠ACE=120°, ∴△FOG≌△EOC(ASA), ∴CE=FG, ∵OC=OG,CA=CD, ∴OA=DG, ∴CF-EC=CF-FG=CG=CD+DG=AC+AC=AC, (3)作BH⊥AC于H.∵AB=6,AH=CH=3, ∴BH=3, 如图③-1中,当点O在线段AH上,点F在线段CD上,点E在线段BC上时. ∵OB=2, ∴OH==1, ∴OC=3+1=4, 由(1)可知:CO=CE+CF, ∵OC=4,CF=1, ∴CE=3, ∴BE=6-3=3. 如图③-2中,当点O在线段AH上,点F在线段DC的延长线上,点E在线段BC上时. 由(2)可知:CE-CF=OC, ∴CE=4+1=5, ∴BE=1. 如图③-3中,当点O在线段CH上,点F在线段CD上,点E在线段BC上时. 同法可证:OC=CE+CF, ∵OC=CH-OH=3-1=2,CF=1, ∴CE=1, ∴BE=6-1=5. 如图③-4中,当点O在线段CH上,点F在线段DC的延长线上,点E在线段BC上时. 同法可知:CE-CF=OC, ∴CE=2+1=3, ∴BE=3, 综上所述,满足条件的BE的值为3或5或1.
复制答案
考点分析:
相关试题推荐

如图,AB⊙O的直径,弦CD⊥AB,垂足为点ECF⊥AF,且CF=CE

1)求证:CF⊙O的切线;

2)若sin∠BAC=,求的值.

 

查看答案

如图为某景区五个景点ABCDE的平面示意图,BAC的正东方向,DC的正北方向,DEB的北偏西30°方向上,EA的西北方向上,CD相距1000mEBD的中点处.

(1)求景点BE之间的距离;

(2)求景点BA之间的距离.(结果保留根号)

 

查看答案

如图,等边三角形ABC的边长为6,在ACBC边上各取一点EF,使AECF,连接AFBE相交于点P.

(1)求证:AFBE,并求∠APB的度数;

(2)AE2,试求AP·AF的值.

 

查看答案

一个几何体的三视图如下,主、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的侧面展开图的面积是多少?

 

查看答案

如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于A23)、Bn)两点.

1)求一次函数和反比例函数的解析式;

2)若P轴上一点,且满足△PAB的面积是5,直接写出OP的长.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.