在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.
(1)AN= ;CM= .(用含t的代数式表示)
(2)连接CN,AM交于点P.
①当t为何值时,△CPM和△APN的面积相等?请说明理由.
②当t=3时,试求∠APN的度数.
因式分解是把多项式变形为几个整式乘积的形式的过程.
(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.
(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx﹣6,(x为整数),乙容器的底面是正方形.
①求出a,b的值;
②分别求出甲、乙两容器的高.(用含x的代数式表示)
如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE=AB.
(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;
(3)若AC=8,∠E=15°,求三角形ABE的面积.
化简:(﹣) ÷ ,并解答:
(1)当x=3时,求原式的值;
(2)原式的值能等于﹣1吗?为什么?
某工厂现在平均每天比原计划多生产 50 台机器,现在生产 600 台机器所需时间与原计划生产 450 台机器所需时间相同.
(1)现在平均每天生产多少台机器;
(2)生产 3000 台机器,现在比原计划提前几天完成.
如图,已知A(﹣2,4),B(4,2),C(2,﹣1)
(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;
(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).