如图,AB是半圆O的直径,C,D是半圆O上的两点,弧AC=弧BD,AE与弦CD的延长线垂直,垂足为E.
(1)求证:AE与半圆O相切;
(2)若DE=2,AE=,求图中阴影部分的面积
盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:
摸棋的次数n | 100 | 200 | 300 | 500 | 800 | 1000 |
摸到黑棋的次数m | 24 | 51 | 76 | 124 | 201 | 250 |
摸到黑棋的频率(精确到0.001) | 0.240 | 0.255 | 0.253 | 0.248 | 0.251 | 0.250 |
(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是 ;(精确到0.01)
(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由
如图,中,,,是边上一点,将绕点逆时针旋转,点P旋转后的对应点为.
(1)画出旋转后的三角形;
(2)连接,若,求的度数;
某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(单位:千帕)随气体体积V(单位:立方米)的变化而变化,p随V的变化情况如表所示.
P | 1.5 | 2 | 2.5 | 3 | 4 | … |
V | 64 | 48 | 38.4 | 32 | 24 | … |
(1)写出一个符合表格数据的p关于V的函数解析式
(2)当气球内的气压大于144千帕时,气球将爆炸,依照(1)中的函数解析式,基于安全考虑,气球的体积至少为多少立方米?
求证:相似三角形对应高的比等于相似比.(请根据题意画出图形,写出已知,求证并证明)
已知关于一元二次方程x2+(2m+1)x+m(m+1)=0,试说明不论实数m取何值,方程总有实数根