在Rt△ABC中,∠C=900,AC=4,AB=5,则sinB的值是 ( )
A. B. C. D.
抛物线y=2(x+1)2﹣2与y轴的交点的坐标是( )
A. (0,﹣2) B. (﹣2,0) C. (0,﹣1) D. (0,0)
Rt ABC中,∠C=90°,AC=8cm,BC=6cm,以点C为圆心,5cm为半径的圆与直线AB的位置关系是( )
A. 相切 B. 相交 C. 相离 D. 无法确定
如图1,在△ABC中,D,E分别是AC,BC边上的点,且AD=CE,连接BD,AE相交于点F。
(1)当∠ABC=∠C=60°时,,那么;(直接写出结论)
(2)当△ABC为等边三角形,时,请用含n的式子表示AF,BF的数量关系,并说明理由;
(3)如图2,在△ABC中,∠ABC=45°,∠ACB=30°,AC=,点E在BC上,点D是AE的中点,当∠EDC=30°时,CE和DE的数量关系为。(直接写出结论,不必证明)
设m,n是任意两个实数,规定m,n两数较大的的数称作这两个数的“绝对最值”,用sec(m,n)表示。例如:sec(-1,-2)=-1,sec(1,2)=2,sec(0,0)=0,参照上面的材料,解答下列问题:
(1)sec(,3.14)=________,sec(,)=__________;
(2)若sec(-3x-1,x+1)=-3x-1,求x的取值范围;
(3)求函数与的图象的交点坐标,函数图象如图所示,请你在图中作出函数的图象,并根据图象直接写出sec(-x+2, )的最小值。
某学校为了了解在校初中生阅读数学文化史类书籍的现状,随机抽取了初中部部分学生进行研究调查,依据相关数据绘制成以下不完整的的统计图表,请你根据图表中的信息解答下列问题:
类别 | 人数 | 占总人数比例 |
重视 | a | 0.3 |
一般 | 57 | 0.38 |
不重视 | b | C |
说不清楚 | 9 | 0.06 |
(1)求表格中a,b,c的值,并补全统计图;
(2)若该校共有初中生2400名,请估计该校“不重视”阅读数学文化史书籍的初中生人数;
(3)若小明和小华去书店,打算从A,B,C,D四本数学文化史类书籍中随机选取一本,请用画树状图或列表格的方法,求两人恰好选中同一本书籍的概率。