在代数式3x+、、、、、、中,分式有( ) 个
A. 4个 B. 3个 C. 2个 D. 1个
如图,已知△ABC中,∠ACB=90°,AC=8,cosA=,D是AB边的中点,E是AC边上一点,联结DE,过点D作DF⊥DE交BC边于点F,联结EF.
(1)如图1,当DE⊥AC时,求EF的长;
(2)如图2,当点E在AC边上移动时,∠DFE的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出∠DFE的正切值;
(3)如图3,联结CD交EF于点Q,当△CQF是等腰三角形时,请直接写出BF的长.
已知二次函数y=﹣x2+2mx﹣m2+4.
(1)求证:该二次函数的图象与x轴必有两个交点;
(2)若该二次函数的图象与x轴交于点A、B(点A在点B的左侧),顶点为C,
①求△ABC的面积;
②若点P为该二次函数图象上位于A、C之间的一点,则△PAC面积的最大值为 ,此时点P的坐标为 .
已知,如图,在△ABC中,AB=9,BC=12,点D是BC的中点,联结AD,AD=9,点E在AD边上,且,联结BE.
(1)求证:△BED∽△ABD;
(2)联结CE,求∠CED 的正切值.
(1)如图1,在△ABC中,点M为BC边的中点,且MA=BC,求证:∠BAC=90°.
(2)如图2,直线a、b相交于点A,点C、E分别是直线b、a上两点,ED⊥b,垂足为点D,点M是EC的中点,MD=MB,DE=2,BC=3,求△ADE和△ABC的面积之比.
如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.
(1)求证:EF与⊙O相切;
(2)若AE=6,sin∠CFD=,求EB的长.