满分5 > 初中数学试题 >

已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于...

已知二次函数y=ax2+bx﹣3a经过点A﹣10)、C03),与x轴交于另一点B,抛物线的顶点为D

1)求此二次函数解析式;

2)连接DCBCDB,求证:△BCD是直角三角形;

3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

 

(1)抛物线的解析式为y=﹣x2+2x+3.(2)证明见解析;(3)点P坐标为(,)或(2,3). 【解析】 试题(1)将A(﹣1,0)、C(0,3),代入二次函数y=ax2+bx﹣3a,求得a、b的值即可确定二次函数的解析式;(2)分别求得线段BC、CD、BD的长,利用勾股定理的逆定理进行判定即可;(3)分以CD为底和以CD为腰两种情况讨论.运用两点间距离公式建立起P点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解. 试题解析:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴将A(﹣1,0)、C(0,3),代入,得,解得,∴抛物线的解析式为y=﹣x2+2x+3;(2)如图,连接DC、BC、DB,由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)y=﹣x2+2x+3对称轴为直线x=1.假设存在这样的点P,①以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,(不满足在对称轴右侧应舍去),∴x=,∴y=4﹣x=,即点P1坐标为(,).②以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).
复制答案
考点分析:
相关试题推荐

如图,在中,,以为直径作⊙,分别交于点,点的延长线上,且

1)求证:与⊙相切.

2)若,求的长度.

 

查看答案

某校计划一次性购买排球和篮球,每个篮球的价格比排球贵30元;购买2个排球和3个篮球共需340元.

(1)求每个排球和篮球的价格:

(2)若该校一次性购买排球和篮球共60个,总费用不超过3800元,且购买排球的个数少于39个.设排球的个数为m,总费用为y元.

①求y关于m的函数关系式,并求m可取的所有值;

②在学校按怎样的方案购买时,费用最低?最低费用为多少?

 

查看答案

已知:△ABC的中线BDCE交于点OFG分别是OBOC的中点.

求证:四边形DEFG是平行四边形.

 

查看答案

一个不透明的袋中装有2个黄球,1个红球和1个白球,除色外都相同.

(1)搅匀后,从袋中随机出一个球,恰好是黄球的概是_____

(2)搅匀后,从中随机摸出两个球,求摸到一个红球和一个黄球的概率.

 

查看答案

如图,三个顶点的坐标分别为

1)请画出点逆时针旋转得到,请画出

2)在轴上求作一点,使的周长最小,并直接写出的坐标.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.