如图,在四边形 ABCD 中,AB=CD,∠C=90°,以 AB 为直径的圆O交 AD 于点 E,CD=ED,连接 BD 交圆O于点 F.
(1)求证:BC 与圆O相切.
(2)若 BD=10,AB=13,求 AE 的长.
已知抛物线y=(b<0)的图像的顶点为 M,与 y 轴交于点 A,过点 A的直线 y=x+c 与 x 轴交于点 N,与抛物线另交于点B(6,8).
(1)求线段 AN 的长;
(3)平移该抛物线得到一条新抛物线.设新抛物线的顶点为 M’.若新抛物线经过点 N,, 且新抛物线的顶点和原抛物线的顶点的连线 MM’平行于直线 AB,求新抛物线对应的函数表达式.
郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.
(1)A、B两种奖品每件各多少元?
(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?
央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
(1)此次共调查了 名学生;
(2)将条形统计图补充完整;
(3)图2中“小说类”所在扇形的圆心角为 度;
(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.
甲、乙两名同学参加 1000 米比赛,由于参赛选手较多,将选手随机分 A、B、C 三组进行比赛.
(1)甲同学恰好在A 组的概率是 .
(2)求甲、乙两人至少有一人在 B 组的概率(用画树状图或列表法).
已知:如图,点 B,E,C,F 在同一直线上,AB∥DE,且 AB=DE,BE=CF.求证:AC∥DF.