的倒数是( )
A. 3 B. -3 C. D.
如图1,点E在直线AB上,点F在直线CD上,EG⊥FG.
(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;
(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFD存在怎样的数量关系?并说明理由.
(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFD的数量关系.
如图,已知∠1+∠2=180°,∠B=∠3,∠BAC与∠DCA相等吗?为什么?
已知,如图,AB∥CD,∠BCF=180°,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.
求证:AC⊥BD
请将下列证明过程中的空格补充完整.
证明:∵AB∥CD,
∴∠ABC=∠DCF.(_____)
∵BD平分∠ABC,CE平分∠DCF,
∴∠2=∠ABC,∠4=∠DCF.(_____)
∴_______.
∴BD∥CE.(_______)
∴______.(两直线平行,内错角相等)
∵∠ACE=90°,
∴∠BGC=90°,即AC⊥BD.(_____)
如图,是一个无理数筛选器的工作流程图.
(1)当x为16时,y值为_____;
(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;
(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;
(4)当输出的y值是时,判断输入的x值是否唯一,如果不唯一,请写出其中的两个.
已知a满足|2010-a|+=a,求a-20102的值.