如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上。
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标。
如图,Rt△ABC中,∠ACB=90°,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.
(1)证明:△AC C′∽△AB B′;
(2)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时AC=BF,并说明理由.
如图,△ABC的外接圆圆心O在AB上,点D是BC延长线上一点,DM⊥AB于M,交AC于N,且AC=CD.CP是△CDN的边ND上的中线.
(1)求证:AB=DN;
(2)试判断CP与⊙O的位置关系,并证明你的结论;
(3)若PC=5,CD=8,求线段MN的长.
四川省芦山县4月20日发生了7.0级强烈地震,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48000m2和B种板材24000m2的任务.
⑴如果该厂安排280人生产这两种板材,每人每天能生产A种板材60 m2或B种板材40 m2,请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?
⑵某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:
板房 | A种板材(m2) | B种板材(m2) | 安置人数 |
甲型 | 110 | 61 | 12 |
乙型 | 160 | 53 | 10 |
①共有多少种建房方案可供选择?
②若这个灾民安置点有4700名灾民需要安置,这400间板房能否满足需要?若不能满足请说明理由;若能满足,请说明应选择什么方案.
如图,在直角坐标平面内,反比例函数的图象经过点A(2,3),B(a,b),其中a>2.过点B作y轴垂线,垂足为C,连结AB、AC、BC.
(1)求反比例函数的解析式;
(2)若△ABC的面积为6,求点B的坐标.
如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一不明国籍的渔船C,求此时渔船C与海监船B的距离是多少.(结果保留根号)