满分5 > 初中数学试题 >

在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,...

在正方形ABCD中,动点EF分别从DC两点同时出发,以相同的速度在直线DCCB上移动.

1)如图1,当点E在边DC上自DC移动,同时点F在边CB上自CB移动时,连接AEDF交于点P,请你写出AEDF的数量关系和位置关系,并说明理由;

2)如图2,当EF分别在边CDBC的延长线上移动时,连接AEDF,(1)中的结论还成立吗?(请你直接回答,不需证明);连接AC,请你直接写出ACE为等腰三角形时CECD的值;

3)如图3,当EF分别在直线DCCB上移动时,连接AEDF交于点P,由于点EF的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD2,试求出线段CP的最大值.

 

(1)AE=DF,AE⊥DF,理由见解析;(2)成立,CE:CD=或2;(3) 【解析】 试题(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF; (2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;②当AE=AC时,设正方形的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a即可; (3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可. 试题解析:(1)AE=DF,AE⊥DF, 理由是:∵四边形ABCD是正方形, ∴AD=DC,∠ADE=∠DCF=90°, ∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动, ∴DE=CF, 在△ADE和△DCF中 , ∴, ∴AE=DF,∠DAE=∠FDC, ∵∠ADE=90°,∴∠ADP+∠CDF=90°, ∴∠ADP+∠DAE=90°, ∴∠APD=180°-90°=90°, ∴AE⊥DF; (2)(1)中的结论还成立, 有两种情况: ①如图1,当AC=CE时, 设正方形ABCD的边长为a,由勾股定理得, , 则; ②如图2,当AE=AC时, 设正方形ABCD的边长为a,由勾股定理得: , ∵四边形ABCD是正方形, ∴∠ADC=90°,即AD⊥CE, ∴DE=CD=a, ∴CE:CD=2a:a=2; 即CE:CD=或2; (3)∵点P在运动中保持∠APD=90°, ∴点P的路径是以AD为直径的圆, 如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P, 此时CP的长度最大, ∵在Rt△QDC中, ∴, 即线段CP的最大值是.
复制答案
考点分析:
相关试题推荐

若有理数ab在数轴上所表示的点分别在原点的左边和右边,求的值.

 

查看答案

阅读下面问题:

 

2

试求:(1的值;

2n为正整数)的值;

3的值.

 

查看答案

如图,长方形ABCD中,AB6BC8,点EBC边上一点,连接AE,把△ABE沿AE折叠,使点B落在点B'处.当△CEB'为直角三角形时,求BE的长?

 

查看答案

如图,在ABCD中,点M、N分别在AD、BC上,DM=BN.求证:四边形ANCM是平行四边形.

 

查看答案

如图,在平行四边形ABCD中,∠ABC45°,EF分别在CDBC的延长线上,AEBD,∠EFC30°,AB2.求CF的长.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.