满分5 > 初中数学试题 >

(1)如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接B...

(1)如图1,ACBDCE均为等边三角形,点ADE在同一直线上,连接BE,则AEB的度数为__________.

(2)如图2,ACBDCE均为等腰直角三角形,ACB=DCE=90°,点ADE在同一直线上,CMDCEDE边上的高,连接BE.求AEB的度数及线段CMAEBE之间的数量关系,并说明理由.

 

(1)60°.(2)∠AEB=90°,AE=BE+2CM.理由见解析. 【解析】【解析】 (1)∵△ACB和△DCE均为等边三角形, ∴CA=CB,CD=CE,∠ACB=∠DCE=60°, ∴∠ACD=60°﹣∠DCB=∠BCE. 在△ACD和△BCE中, , ∴△ACD≌△BCE(SAS). ∴∠ADC=∠BEC. ∵△DCE为等边三角形, ∴∠CDE=∠CED=60°. ∵点A,D,E在同一直线上, ∴∠ADC=120°, ∴∠BEC=120°. ∴∠AEB=∠BEC﹣∠CED=60°. (2) ∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90° ∴CA=CB,CD=CE. 且∠ACD=∠BCE. 在△ACD和△BCE中, , ∴△ACD≌△BCE(SAS). ∴AD=BE,∠ADC=∠BEC. ∵△DCE为等腰直角三角形, ∴∠CDE=∠CED=45°. ∵点A,D,E在同一直线上, ∴∠ADC=135°, ∴∠BEC=135°. ∴∠AEB=∠BEC﹣∠CED=90°. ∵CD=CE,CM⊥DE, ∴DM=ME. ∵∠DCE=90°, ∴DM=ME=CM. ∴AE=AD+DE=BE+2CM.  
复制答案
考点分析:
相关试题推荐

某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.

1)求每件甲种、乙种玩具的进价分别是多少元?

2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?

 

查看答案

已知长方形长a,宽b

求长方形的周长;

求与长方形等面积的正方形的周长,并比较长方形周长与正方形周长大小关系.

 

查看答案

已知:如图,,点BEFD在同一直线上,求证:

 

查看答案

先化简,再求值:,其中

 

查看答案

计算:

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.