满分5 > 初中数学试题 >

如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按...

如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D。

(1)求证:BE=CF ;

(2)当四边形ACDE为菱形时,求BD的长

 

(1)证明见解析(2)-1 【解析】 试题(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根据旋转的定义,△AEB可由△AFC绕点A按顺时针方向旋转得到,然后根据旋转的性质得到BE=CD; (2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解. 试题解析:(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,∵AB=AC,∴AE=AF,∴△AEB可由△AFC绕点A按顺时针方向旋转得到,∴BE=CD; (2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=.
复制答案
考点分析:
相关试题推荐

九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.

据统计图提供的信息,解答下列问题:

(1)在这次调查中一共抽取了     名学生,m的值是     

(2)请根据据以上信息直在答题卡上补全条形统计图;

(3)扇形统计图中,数学所对应的圆心角度数是     度;

(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.

 

查看答案

将平行四边形纸片ABCD按如图方式折叠,使点CA重合,点D落到D′ 处,折痕为EF. 

(1)求证:ABE≌△AD′F;

(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论

 

查看答案

8分)如图,在▱ABCD中,∠BCD=120°,分别延长DCBC到点EF,使得△BCE△CDF都是正三角形.

1)求证:AE=AF

2)求∠EAF的度数.

 

查看答案

如图,矩形ABCD中,AB=3BC=4EBC边上一点,连接AE,把B沿AE折叠,使点B落在点处,当为直角三角形时,BE的长为      .

 

 

查看答案

如图,点EF分别是菱形ABCD的边BCCD上的点,且∠EAF=∠D60°,∠FAD45°,则∠CFE_______________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.